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Abstract 

Water temperature is one of the important characteristics of a stream that can be impacted 

by anthropogenic change.  Such change can have significant ecological implications for the 

health of riparian systems. It is important for decision-makers to understand the impact of 

various physical characteristics on the stream temperature regime in a watershed. This research 

applies a statistical stream temperature model (Mohseni et al, 1998) to 905 sites across the 

northeastern United States to determine if such models can be useful to resource managers. 

Statistical analysis on the calibrated model parameters across the best-fit sites is used to provide 

information on watershed characteristics which may be critical to stream temperature. In addition 

to air temperature, which is the obvious driver of stream temperature, groundwater influence, 

forest coverage, urban area, and drainage area, which is representative of travel time, are the 

most significant watershed characteristics that impact stream temperature. While the 

relationships between forested and urban landscapes and stream temperature generated in this 

research confirm past research, a definitive relationship between groundwater and stream 

temperature was not established.   

A predictive model of stream temperature is also developed, extending the work of 

Mohseni et al. (1998). This model uses watershed characteristics and meteorological data to 

generate stream temperatures at an ungaged location. Uses of this model include analyzing the 

impacts of anthropogenic changes on stream temperature regimes and the generation of realistic 

stream temperatures at a location for use in another model, such as the physical stream 

temperature model developed by Yearsley (2011). Results from the predictive model are 

comparable to those from the calibrated nonlinear stream temperature model analyzed. 
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1. Introduction 

 Stream temperature is directly linked to ecosystem health, impacting physical, biological, 

and chemical processes (Cummins, 1974, Vannote et al, 1980). The survivability of aquatic 

organisms, especially cold water species, is sensitive to stream temperature regime alterations 

(Eliason et al, 2011 and Elliott & Elliot, 2010). Anthropogenic influence has already, and is 

expected to continue to change stream temperature regimes (Isaak et al, 2011, and Battin et al, 

2007). An average water temperature change of just 1 or 2 
o
C may have severe consequences for 

the well-being of aquatic species. Feeding, growth, and survival rates are all dependent upon 

different temperature characteristics at different life-cycle stages. Stream temperature increases 

beyond the critical temperature for survival of a species can be lethal within minutes. Adverse 

effects on one species will likely produce ramifications experienced throughout the ecosystem. 

The monitoring and modeling of stream temperature regimes is a critical asset to decision-

makers assessing ecosystem vulnerability. Monitoring and modeling promote understanding of 

the workings of hydrologic systems and the critical role played by stream temperature. 

 While air temperature is widely recognized as the primary factor influencing stream 

temperature, other physical attributes of a watershed have significant impacts (Mayer et al. 2012, 

Hebert et al. 2011, Poole et al. 2001, Bowler et al. 2012, and others). The relative impact of these 

factors at a given location varies depending on the physical characteristics of the watershed. 

Projected increases in air temperature and alteration to hydrologic systems due to climate change 

and other anthropogenic sources are expected to have a significant impact on stream temperature. 

Determining the relationships between basin properties and stream temperature improves our 

understanding of how stream temperature responds to these changes. Developing an 

understanding of which basin characteristics are correlated with resiliency of stream temperature 
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regimes is instrumental in the management and conservation of aquatic habitats. Understanding 

the relationships involved in stream temperature prediction can be achieved by utilizing an 

existing statistical stream temperature model. This research seeks to develop a modeling 

framework which contributes to estimation of stream temperature at ungaged locations as well as 

an understanding of the factors governing stream temperature within the Northeastern United 

States.  

This research reviews existing modeling techniques, compiles stream temperature data 

from various organizations within the study area, analyzes a statistical stream temperature model, 

and assesses the factors contributing to stream temperature regimes in New England. The 

collection of existing stream temperature data in the Northeast into a consistent format for 

analysis in stream temperature models is part of the Northeast Stream Temperature Inventory, a 

larger data-gathering effort that is underway in conjunction with the United States Geological 

Survey. The mapping of existing stream temperature logger sites will be used to plan the 

deployment of additional temperature loggers with the goal of achieving both coarse and fine-

grain temperature monitoring. A non-linear regression model (Mohseni et al. 1998) is applied to 

905 sites across the northeast. Site selection based on calibration criteria yields 195 sites suitable 

for further analysis. A principal component analysis (PCA) and a stepwise regression analysis are 

utilized to determine the watershed characteristics most significant in determining stream 

temperature. The PCA is also used to develop a prediction model for stream temperature at 

ungaged locations across the region. It is anticipated that this research will provide valuable 

information on the understanding of what physical characteristics contribute to robustness of 

thermal regimes. 
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2. Background 

2.1. Stream Temperature Variability and Physical Characteristics of 

Watersheds 

Variables that determine water temperature in river systems can be characterized as: 

drivers, insulators, and buffers. Drivers determine the flow of water and the delivery of energy to 

the system.  Insulators affect the rate at which this heat energy enters or leaves the system.    

Buffers store and release energy, thus heating and cooling the system. The impact of buffering 

processes depends on variability within the temperature regime. If the temperature of the system 

remains constant, buffering processes have no impact (Poole et al, 2001). The primary factors 

determining stream temperature (climate, subsurface flow, vegetation, land cover, and channel 

morphology) can be placed in these categories. The impact of each of these processes varies both 

spatially and temporally in any given watershed. 

2.1.1. Climatic Drivers 

Meteorological conditions drive hydrologic systems and are the primary source of heat 

energy into the system at the stream surface. Model results from Hebert et al. (2011) support the 

notion that surface heat fluxes dominate over streambed fluxes. Temperature fluctuations in 

watersheds with long travel times (> 100 ha), are known to be governed by meteorological 

conditions (Subehi et al, 2009). Stream temperature is widely recognized as being strongly 

correlated with ambient air temperature which is used as a primary driver in many stream 

temperature models (Mohseni et al, 1998, Morrill et al, 2005, Ficklin et al, 2011, and Yearsley, 

2011). Mohseni et al. (1998) developed a non-linear relationship between stream and air 
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temperature that has become widely accepted as the basis for statistical modeling efforts of 

stream temperature. 

Solar radiation also delivers heat directly into the stream system and varies depending on 

the solar angle and the shading of the stream surface. Shading is determined by vegetation, 

topography, and cloud cover. Physically-based, deterministic stream temperature models often 

contain solar input as a primary input (Tung et al, 2006). More recent studies indicate that solar 

radiation may be the most influential driver of stream temperature (Mayer et al, 2012 and Hebert 

et al. 2011). Mayer et al. (2012) state that net short wave radiation is more important than air 

temperature in the heat balance of a stream, and that both water and air temperatures depend on 

the heat flux from solar loading. This concept suggests the possibility that air temperature could 

be a secondary method of measuring flux due to solar radiation input. In larger rivers where there 

is increased solar input and separation from shading and subsurface sources, the variance of 

maximum temperature is greatest (Vannote et al, 1980). In support of the importance of both 

factors, a study by Subehi et al. (2009) states that larger watersheds have greater temperature 

variability, indicating that solar radiation and surface heat transfer dominate the water 

temperature determinants. 

As the source of all water within the system, precipitation is another central climatic 

driver, entering the stream channel through both surface and groundwater flow. Groundwater 

flow is examined more closely in the next section. Subehi et al. (2009) found that small 

watersheds with steep slopes have higher stream temperature variability due to rainfall driven 

flows that follow air temperatures more closely. Other climatic factors such as relative humidity 

and wind speed can influence stream temperature. A modeling effort in New Brunswick, Canada 
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found that evaporative heat exchange accounts for 25-31% of heat flux losses, while convective 

heat fluxes remain under 10% of the total for both gains and losses (Hebert et al, 2011). 

In a study of 104 sites in the Pacific Northwest, Mayer et al. (2012) found that air 

temperature explains only 20% of the variance in regional summer stream temperatures. The 

addition of other variables including base flow, stream length, slope, and area of forested land in 

the catchment explained an additional 52% of the variance. Results of this study emphasize the 

importance of understanding other contributing factors to stream temperature beyond the primary 

climatic drivers. 

2.1.2. Groundwater Sources 

 Groundwater influence on stream temperature regimes is another important factor in 

establishing stream temperature regimes. Hebert et al. (2011) found streambed flux to be 

approximately 20% of the total heat energy input in a watershed in eastern Canada. The 

groundwater component can be divided into two separate types of processes that have two 

distinct impacts on stream temperature regimes. Phreatic groundwater enters the system from the 

catchment aquifer in the basin and is a temperature driver. This type of groundwater is the source 

of base flow in streams in the northeast and tends to be relatively consistent in temperature, 

roughly the mean air temperature of the region (NGWA, 2013). Because of this feature, phreatic 

groundwater moderates stream temperatures throughout the year (Poole et al, 2001).  The same 

study found these streambed fluxes to be more significant in smaller streams than larger ones. 

Phreatic groundwater is the easier of the two to quantify.  

The second type of groundwater related to stream temperature exists as a buffering 

process within river systems. Hyporheic groundwater infiltrates into the alluvial aquifer from the 

streambed and reemerges into the streambed downstream, after having been stored for some 
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period of time. This groundwater exchange is an important buffering process in the system, 

occurring across varying spatial and temporal scales. The impact of hyporheic flow depends on 

the variability of the temperature regime (Poole et al, 2001). A less variable system experiences a 

minimal effect from this type of groundwater flow. 

Differentiating between types of groundwater is difficult and most studies use a single, 

simplified measurement of groundwater input. In a study of stream temperature dynamics in 

New Brunswick, Canada, Hebert et al. (2011) suggest that streambed heat fluxes serve as an 

energy sink during the day and an energy source at night. Mayer et al. (2012) found a negative 

relationship between monthly baseflow index (BFI) and August stream to air temperature ratio, 

suggesting that an increase in groundwater influence results in cooler summer stream 

temperatures. Findings from Subehi et al. (2009), show that the study site with largest difference 

between air and water temperatures had the greatest groundwater inflow. They also found 

medium-sized watersheds to be more susceptible to slope effects on groundwater infiltration. 

Groundwater is an influential, yet complex factor in determining stream temperature and it is 

important to include at least some simplified measure of subsurface flow input in temperature 

modeling efforts. 

2.1.3. Riparian Vegetation 

Riparian vegetation influences stream temperature in two ways. Vegetation shades rivers 

from solar radiation, reducing heat input into the system (Hebert et al, 2011 and Mayer et al, 

2012). Vegetation also serves as a wind barrier directly above the stream surface. The reduction 

of wind reduces evaporative cooling and limits convection and advection of heat energy to and 

from the system (Vannote et al, 1980 and Hebert et al, 2011). 
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The implications of riparian vegetation on stream temperature have been widely 

documented. In Bowler et al. (2012), a literature review found that tree cover in riparian zones 

decreases mean and maximum temperatures. The magnitude of these differences however, 

varies. Studinski et al. (2012) found that small scale reduction in riparian canopy cover can lead 

to rapid increase in stream temperature, suggesting a direct correlation between canopy cover 

and stream temperature. The same study found that the continuity of canopy coverage matters 

such that small patchy disturbances have minimal impact on stream temperature. The degree of 

riparian shading can dictate where in the river the environment shifts from heterotrophic to 

autotrophic processes (Vannote et al., 1980). Although the presence of riparian vegetation is 

likely related to watershed land use, it is influential enough to be categorized separately in any 

discussion and analysis. 

2.1.4. Land Use 

 Physical characteristics of the drainage area play an important role in stream temperature. 

Anthropogenic changes to the natural landscape typically result in an overall warming of the 

temperature regime. Urbanization, deforestation, and agricultural development are among the 

most common changes seen to alter stream temperature. 

Mayer et al. (2012) report a negative correlation between percent forested area and 

August stream temperature, suggesting that increased forest area should result in lower stream 

temperatures. Understory coverage, which is related to forest management, has been found to 

increase precipitation infiltration during small rainfall events, increasing groundwater influence 

(Subehi et al., 2009). The same study found vegetation cover to be one of the factors most 

influential to temperature fluctuations in small and medium-sized watersheds. 
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 The degree of urbanization in a watershed contributes to increased stream temperatures. 

Kinouchi et al. (2006) suggest that anthropogenic heat input from urban wastewater effluent is 

the primary cause of long-term temperature increases in the Tokyo area. In mid-size watersheds, 

topographic characteristics known to influence groundwater flow time and path have been found 

to be among the main factors in temperature fluctuations (Subehi et al., 2009). Blevins et al. 

(2013) propose that differences in physiological response of fish species within different 

temperature ranges can be used to predict the impacts of landscape alteration. 

2.1.5. Channel Morphology 

Channel structure, determined in part by the other processes that drive stream 

temperature, influences the temperature regime through exposure to temperature drivers as well 

as both insulating and buffering processes. Channel size, shape, width, and pattern all determine 

the degree of shading and insulation from riparian vegetation as well as the surface area available 

for heat exchange. A wider channel, for example, absorbs more solar radiation and is shaded less 

than a narrow channel. Hyporheic flow, the primary buffering process in most systems, is 

dependent on streambed topography, substrate, and channel pattern. In-stream flow rate, which 

determines how long water is exposed to air and solar radiation, is dictated by channel slope. 

Mayer et al. (2012) found variation in summer thermal regimes between sites to depend on 

channel slope and length. The concept behind this finding is that shorter travel time allows less 

time to gain heat through climatic drivers, meaning steeper slopes and shorter reach lengths 

produce lower temperatures overall. Greater temperature fluctuation with increased flow time, as 

determined by Subehi et al. (2009), supports this concept. A study of geologically distinct zones 

in eastern Canada showed sites with more exposed igneous bedrock, poor soil layers, and less 

erosion to have lower water temperatures (Neff and Jackson, 2012). The channel morphology of 
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these sites lacks the typical pool and riffle morphology, which results in shorter travel time. 

While channel morphology may be difficult to model explicitly outside of reach specific models, 

it may be represented indirectly through geologic and topographic properties. 

2.2. Ecological Implications of Stream Temperature 

 Stream temperature regimes are a critical component of ecosystem health, which can be 

defined as having the ability to maintain structure and function under external stress (Costanza & 

Mageau, 1999). Physiology, health, population, and distribution of aquatic organisms can all be 

linked to various measurements of stream temperature. A basic understanding of the River 

Continuum Concept (RCC) is necessary to link the well-being of these species to their 

surrounding habitat. 

2.2.1. River Continuum Concept 

Vannote et al. (1980) developed the RCC to describe the interactions between the 

physical attributes of a river system and the biotic communities present within it. This model 

suggests that a balance is maintained across the downstream gradient of changing structural 

conditions between lotic organisms and their surrounding environment. 

Organisms are classified into four distinct groups based on their function in the river 

continuum, a concept extending the work of Cummins (1974) that sought to classify organisms 

based on function in place of traditional taxonomic definitions. Shredders, collectors, and grazers 

all consume organic plant matter of different types, while predators feed on other organisms. 

Shredders reduce coarse particulate organic matter (CPOM) to fine particulate organic matter 

(FPOM) and are dominant in headwater systems. Grazers are most common in mid-sized rivers, 

where algal growth is abundant. Further downstream, FPOM is more readily available from 

processes occurring upstream. FPOM availability results in a shift in the biological community to 
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being primarily comprised of collectors. This downstream biological gradient forms the basis of 

the Vannote et al.’s river continuum concept which is visually represented in Figure 1. 

Vannote et al. (1980) state that 

community structure, along a lotic 

system, is arranged so that variance in 

system structure and function is 

minimized by energy efficient processing 

of organic material. System stability 

depends on how well this structure is 

maintained during environmental 

variations. In systems with large 

temperature fluctuations, the presence of 

specific biota is crucial to maintaining 

this stability (Vannote, 1980). 

Anthropogenic perturbations to the 

system, with varying impacts on 

temperature at different parts of a stream, 

cause the distribution of the river 

continuum structure to shift upstream or downstream (Vannote et al., 1980 and Poole & Berman, 

2001). This effect emphasizes the importance of developing an understanding of the impact of 

anthropogenic changes on temperature regimes. 

Figure 1: Relative relationships of biological 

communities in the River Continuum Concept as 

described by Vannote et al. (1980). 
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2.2.2. Identifying classes and assemblages through temperature regimes 

As discussed in previous sections, temperature regimes vary across different sections of a 

river. The distribution of functional classes across the system, as described by the RCC, is at 

least partially temperature dependent. This relationship allows researchers to group organisms 

into classes and assemblages based on stream temperature. 

The rate of conversion from CPOM to FPOM described in the previous section, and the 

flocculation of dissolved organic matter (DOM) to FPOM, are temperature dependent processes 

(Cummins, 1974). This dependence is due to the fact that particulate organic matter retention 

characteristics, the presence of material processing organisms and their metabolic rates, are 

influenced by temperature. The same study uses the temperature dependent ratio of heterotrophy 

to autotrophy in the definition of functional groups based on organic matter processing. The 

result is that the presence and distribution of the process oriented functional groups described by 

Vannote et al. (1980) may be defined by temperature regimes. 

A number of studies have focused on the impact of temperature regimes on the grouping 

of biotic communities. Higgins et al. (2005) classifies freshwater systems based on small scale 

aquatic ecosystem patterns scaled within larger geographic units. Temperature is among the 

attributes identified as having an influence over biodiversity distribution in fresh water 

ecosystems. Vannote et al. (1980) state that this biodiversity is dependent on the physical 

stability of the system, with greater biodiversity or complexity occurring in systems with a 

variable physical structure. Hoehinghaus et al. (2006) found that temperature extremes with 

shrub and forest land use classifications explained 50% of explained taxonomic variation of 85 

fish species in 6 river basins in the state of Texas. The study predicts the addition of annual 

temperature extremes to the habitat template used to define functional groups that comprise fish 
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assemblages. In a study that yielded similar results, Neff and Jackson (2012) found differences in 

fish assemblages between sites on and off of the Canadian Shield (a large area in eastern Canada 

comprised of igneous rock, a thin soil layer, and atypical morphology where normal pool and 

riffle structure is lacking due to limited erosion). Temperature was included as a dominant 

abiotic variable associated with off-Shield sites, while brook trout and shiner, a fish found in 

pools of clear, cool streams, were strongly associated with on-Shield systems. Additionally, a 

small portion of the fish assemblage variance could be attributed to land use factors. Overall, 

temperature plays an important role in the grouping of aquatic species. 

Grouping species solely by temperature however, may be muddled by intra-species 

variation in temperature tolerance. Eliason, et al. (2011) found variation in physiological 

adaptation to thermal regimes among different sockeye salmon populations within a single 

watershed. They conclude that the adaptation of thermal limits occurs at a local scale as different 

populations migrate to separate areas of the watershed. Experimental results show that creek 

chub inhabiting differing thermal regimes respond differently to thermal stresses (Blevins et al., 

2013). Streams with forested and agricultural riparian zones were compared, with temperatures 

presumably warmer in agricultural watersheds. The landscape-level differences were shown 

through reduced responses of stress to hypoxia by the agricultural located fish, which were 

calculated to consume 15% less energy in response to the thermal challenge. Higgins et al. 

(2005) suggest the need for developing empirical relationships between stream temperature and 

landscape variables in classifying microhabitat. These relationships could be used in attempts to 

classify freshwater systems with the purpose of planning for biodiversity conservation.  
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2.2.3. Lethal temperatures 

 Riverine ecosystem vitality is often linked to the health and success of the native fish 

species. In the Northeast, cold water species are of particular concern. These species are an 

indicator of the overall state of the ecosystem in which they reside, making it necessary to 

understand the threshold at which stream temperatures become lethal. Temperature limits vary 

across different species and life stages, but general trends exist. Eliason et al. (2011) found that 

aerobic scope, cardiac scope, and the scope for heart rate are all positively correlated with stream 

temperature in various sockeye salmon populations. The scopes referred to are defined as the 

range from rest to maximum exertion. Thus, under higher temperature conditions, more energy is 

required to perform the same actions than in cooler temperatures. This also means that 

individuals accustomed to cooler temperatures will experience greater difficulty with 

temperature increases. The same study found variation of physiological adaptation to thermal 

regimes among sockeye salmon within a watershed. Table 1 presents the ranges at which these 

temperature increases become lethal to some select species in different locations (Elliott & 

Elliott, 2010). Incipient lethal temperatures are those the species can tolerate for up to 7 days 

whereas ultimate lethal temperatures refers to temperatures the fish cannot tolerate for short 

period of time, typically 10 minutes. It should be noted that differences between these two 

classifications are small and occasionally even overlap. 

 

 

 

 

 



14 

 

  
Atlantic salmon 

(Salmo Salar) 
brown trout     

(Salmo trutta) 
Arctic charr 

(Savelinus alpinus) 

 
Lower Upper Lower Upper Lower Upper 

Eggs 0 16 0 13 0 8 

Alevins 
         Incipient 0-2 23-24 0-1 20-22 0-0.3 19-21 

   Ultimate 0-1 24-25 0 22-24 0-0.2 23-27 

Parr + smolt 
         Incipient 0-2 22-28 0-0.7 22-25 0-1 22-23 

   Ultimate -0.8 30-33 -0.8 26-30 -1 26-27 

   Feeding 0-7 22-28 0.4-4 19-26 0.2 21-22 

 

Table 1: Critical temperatures (
o
C) for survival at different life stages of Atlantic salmon, brown 

trout, and Arctic charr as presented by Elliott & Elliott (2010). 

 

While it is necessary that the habitat temperature of these species remain between the 

temperature limits, anthropogenic changes to temperature regimes may come in forms differing 

from just lethal temperatures. Focusing solely on lethal temperatures may not be the most 

effective method for assessing the health of a species. The next section discusses other important 

measurements of temperature that matter to overall ecosystem health. 

2.2.4. Ecologically Important Temperature Metrics 

 Similar to many other aspects of natural systems, the temperature impacts on organisms 

are complex and not fully understood. More conditions than simply mean and maximum 

temperature have an impact on ecosystem health. Poole and Berman (2001) suggest that 

anthropogenic changes may impact the spatial and temporal distribution of temperature 

differently and that significant changes may occur long before being detected by changes in the 

mean temperature. Magnitude, timing, duration, habitat type, species, population, and life stage 

are some of the factors that determine the effect temperature will have on a given organism. 

Stream temperature variability is one of the ecologically important metrics. Vannote et al. 

(1980) state that system stability in large rivers should be correlated with a reduction in the 
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variance of diel temperatures. Common temperature metrics, including seasonal and 7-day mean 

and maximum temperatures, were used in a study by Butryn et al. (2013) to predict brook trout 

proportion in a small Vermont watershed. The metrics were sufficient but failed to successfully 

capture temperature variation, leading the authors to develop new metrics to account for this 

limitation. Temperature event frequency, duration, and magnitude are among the new metrics 

used to capture stream temperature variation. Incorporation of the study’s new metrics with the 

commonly used metrics improved accuracy in predicting brook trout distribution. Steel et al. 

(2012) supports the importance of stream temperature variability which they found to have a 

significant influence on the emergence timing of Chinook salmon eggs as well as the stage of 

development at emergence.  

 After hatching, the smolt life-cycle stage is the most vulnerable as migration is being 

initiated while the fish are still relatively small in size. McCormick et al. (1998) make the case 

that high temperature increases have serious implications for smolt survival in the wild, with 

smolt timing being affected by stream temperature. The same study suggests that spring 

temperature increase is particularly important in smolt run timing, which tends to occur around 

10
o
C for Atlantic salmon and brown trout. While the typical measurements of mean and 

maximum temperatures are critical to the survival of aquatic organisms, the implications of 

temperature regimes go well beyond these metrics. 

Given the importance of the relationship between stream temperature and ecosystem 

processes, coupled climate-stream temperature predictions are essential for developing robust 

aquatic conservation strategies and understanding the factors most likely to influence stream 

temperature regimes. This research attempts to further this understanding through the application 

of a model developed for natural resource managers. The model will allow users to use physical 
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characteristics of the watershed, such as the ones described in section 2.1, to predict aspects of 

the air to stream temperature relationship at a location. Relationships between basin 

characteristics and stream temperature regimes may be drawn to inform which features are most 

influential. This understanding can be used in conjunction with other information such as species 

presence to develop conservation targets. 

2.3. Study Area 

The study area of this research focuses on the northeast United States, including streams 

in Connecticut, Massachusetts, Vermont, and New Hampshire. Land cover, topography, geology, 

and climate vary significantly across this region, allowing for a broad, comprehensive 

investigation of many different factors contributing to stream temperature. The average air 

temperatures in the region range from roughly -10 - 0 
o
C in the winter and 20-25 

o
C in the 

summer. The variability of weather conditions in the region is noteworthy, and conditions can 

deviate largely from these averages.  The region’s average annual precipitation of 40-50 inches is 

evenly distributed throughout the year (NOAA, 2012). This region is predicted to experience 

climate change impacts that will impact stream temperature. Average annual air temperatures in 

the region are projected to increase by roughly 1 to 2 
o
C by 2050 (Maurer et al., 2007). A 

historical decrease in the snow/rain ratio (Huntington et al. 2003), as well as a historical increase 

in precipitation and streamflow with earlier springtime peak flows (Huntington 2009), implies 

hydrologic changes to the region that will alter streamflow regimes. The focus of this research is 

to identify basins in the study area with appropriate qualities for robust stream temperature 

regimes under climate change. These temperature regimes will have the least amount of 

deviation from the norm under changing meteorological conditions. The choice of study area is 

also concurrent with other research in progress within the Northeast Climate Science Center. 
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2.4. Modeling Stream Temperature 

Assessing the effects of climate change and other anthropogenic changes on riverine 

systems requires accurately modeling stream temperature over large spatial scales and along 

varying stream orders. It is known that organism diversity varies along the river continuum 

(Vannote et al., 1980), as do the physiological coping mechanisms in response to changes within 

an ecosystem.  Adaptation and physiological response to thermal regime changes among fish 

species are shown to be specific to local populations (Eliason et al., 2011 & Blevins et al., 2013), 

emphasizing the importance of monitoring and modeling stream temperature on a fine scale.  

This juxtaposition of modeling broadly and accurately, representing fine scale dynamics, is a 

challenge as models are typically designed to perform well at large scales or for a specific fine 

scale location, but not both.   

Cost reductions in stream temperature monitoring technologies, as well as developments 

in geographic information systems (GIS), have improved our ability to gather data and analyze 

stream temperatures. The influx of easily accessible and useable data emphasizes the value of 

viable stream temperature models. Numerous model paradigms have developed to accurately 

predict stream temperature. These models vary in their complexity, spatial and temporal 

resolution, data requirements, and the resources required to construct and execute these models. 

Commonly, stream temperature models are chosen based on the data and time available for the 

modeling effort. When data are limited simple statistical models may be most suitable, such as 

linear regression between air and water temperature (Morrill et al., 2005, Neitsch et al., 2005, & 

Yearsley 2011). 

Statistical methods are the simplest of the existing model types, with the smallest data 

requirements. A paired time series of air and stream temperature measurements are the only data 
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requirements for these regression models. These models use a function of air temperature fit to 

the distribution of stream temperature data. Calibrated parameters are estimated to adjust the fit 

of the function to the measured stream temperature data. 

The type of regression varies depending on the number of parameters and what they 

represent. Morrill et al. (2005) compares the effectiveness of linear and non-linear regression 

models used to predict the relationship between air and stream temperatures. In Morrill et al. 

(2005), the effect of changes in climate on stream temperature and dissolved oxygen levels is 

explored. Stream temperature data collected from 43 rivers and streams across 13 countries from 

Global Learning and Observations to Benefit the Environment (GLOBE) are used to calibrate the 

model.  Predicted future air temperature changes are calculated from the United Kingdom 

Meteorology Office (UKMO) Hadley Center’s Climate model (hadCM3). Equations are 

developed for each site and mean predicted air temperature for 2095-2099 is input into the 

models. 1, 3, and 7 day air temperature averages are tested to determine the impact on results. 

The non-linear regression model from Mohseni et al. (1998) is used in an attempt to represent 

some water bodies which tend to have temperature thresholds at higher air temperatures. 

Consistent with Mohseni et al. (1998) and other previous studies, the findings of Morrill 

et al. (2005) suggest that most nonlinear regression models tend to have higher Nash-Sutcliffe 

coefficients of efficiency (NSC) and lower RMSEs than linear models. Results show a longer 

time period of averaged air temperature produces improved correlation, with the use of daily air 

temperatures having higher RMSEs than weekly temperatures. Function slope coefficients are 

shown to decrease with increasing elevation and slopes less than 0.6 tended to have lower NSC 

values. No correlation exists between drainage basin size and the relationship of air to stream 

temperature.  The study concludes that the future dissolved oxygen levels will depend partially 
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on the seasonal timing of water temperature increases. 

The results of Morrill et al. (2005) suggest that an S-shaped function is the best choice of 

fit for the air to stream temperature ratio. The nonlinear model shows that as air temperature 

passes the inflection point and approaches the maximum stream temperature of the curve, the 

rate of water temperature increase declines. When the linear model performs well, the nonlinear 

model provides little improvement and neither method consistently predicts the highest observed 

temperatures. If the air to stream relationship does not taper on this upper end, the nonlinear 

model will perform poorly in climate change predictions. Improvement is seen when using the 

seasonal hysteresis method. Noting these results, along with the widespread application of the 

model developed by Mohseni et al. (1998), it can be concluded that among statistical models the 

non-linear relationship is more accurate than the linear relationship. 
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3. Methodology 

The methodology of this research begins with stream temperature data collection from 

various agencies with monitoring operations in the region. An existing statistical stream 

temperature model, representative of the air to stream temperature relationship, is then applied to 

the data. The effect of hysteresis on the air to stream temperature relationship is taken into 

account to determine its significance. The calibration results are used to select sites for further 

analysis. 

Multivariate analysis is used to investigate how varying basin characteristics impact the 

relationship between stream and air temperature. Basin characteristics data are collected based 

on the availability. Stepwise regression and principal component analysis are utilized across all 

of the well-calibrated sites. The basin characteristics are used as independent variables in these 

analyses to predict the parameters of the statistical stream temperature model. Finally, the 

multivariate analysis is used to develop a method for predicting the stream temperature model fit 

at an ungaged location. 

3.1 Stream Temperature Data 

 This research contributes to a broader effort to consolidate existing stream temperature 

data from local, state, and federal agencies into a single database maintained by the Northeast 

Climate Science Center. This research focuses on data collected within New England and its use 

in model construction. The modeling effort utilizes continuous stream temperature data collected 

across New Hampshire, Massachusetts, Vermont, and Connecticut (Table 2). Most data were 

received in the form of an hourly time series, which was then aggregated to daily mean and 

maximum temperatures for model input.  
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Half of the sites have data for less than one calendar year and 75% have less than two 

years. While most of these sites have recorded summer stream temperature, many have seasonal 

data gaps. Only 39% of the 905 sites have recorded winter stream temperature, while 45% of the 

total sites are missing at least two seasons. Record length over the sites ranges from as low as 

one week up to nearly 12 years of continuous data monitoring. Both length of record and 

monitoring continuity are important to model calibration, which is discussed later in this section.  

Agency State 
Number 
of Sites Start Date End Date 

Massachusetts Fish and Wildlife (MFW) MA 57 7/1/2005 11/10/2009 

United States Geological Survey (USGS) MA 8 5/14/1997 7/26/2012 
New Hampshire Department of Environmental 
Services (NHDES) NH 46 6/28/2006 10/20/2008 

New Hampshire Fish and Game Department (NHFG) NH 58 5/20/2005 11/23/2008 
Connecticut Department of Environmental 
Protection (CTDEP) CT 680 6/11/1998 5/2/2012 

United States Forest Service (USFS) VT 56 11/10/2010 10/3/2012 

Total - 905 5/14/1997 10/3/2012 

 

Table 2: Stream temperature data source summary 

 

3.2 Meteorological Data 

 Gridded, 1/8
th

 degree, observed historic meteorological data, developed by Maurer et al. 

(2002), are used as the source of paired observed air temperature for most of the sites in the 

modeling effort. These data were used as they covered all of the sites of interest and could be 

aggregated to a watershed scale. The dataset includes maximum and minimum daily air 

temperatures for each grid cell, which are averaged to generate the estimated daily mean air 

temperature required for model input. The air temperatures are paired with stream temperatures 

based on the data points that lie within the contributing drainage area of the stream temperature 

site. 
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For each stream temperature data location, the upstream watershed is delineated using a 

series of computer scripts written in the R programming language which reference topological 

characteristics within the NHDPlus Version 2 (USEPA, 2010). Using the stream temperature site 

as the ‘pour point’ of the basin, the scripts locate all catchments upstream of the site and 

aggregate them into one contributing watershed. If multiple air temperature data points lie within 

this area, the temperature values are averaged into one value. If no meteorological data sites are 

present within the selected drainage area, the air temperature site nearest to the basin centroid is 

used. In this way, air temperature is paired to stream temperature for use in the nonlinear model. 

This process is repeated for all of the stream temperature sites except for a majority of those 

received from the USFS which already included observed air temperature paired over a 

consistent period of record. 

3.3. Stream Temperature Model 

 As noted previously, air temperature is a primary driver of stream temperature. The air to 

stream temperature relationship may vary spatially, but has been established to typically be 

nonlinear (Mohseni et al, 1998). The relationship between stream and air temperature remains 

linear at mid-range temperatures (Figure 2). This relationship begins to change at the ends of the 

temperature spectrum. As air temperatures dip below 0 
o
C, the stream temperature reaches a 

freezing point, causing a discontinuity in the relationship. Most streams in the Northeast 

experience freezing air temperatures every winter, making this aspect important to capture. On 

the warm end of the range, the atmosphere’s capacity to hold moisture increases with air 

temperature. The rate of evaporative cooling to the stream increases, causing another 

discontinuity. While a number of models use a simplified linear relationship between stream and 

air temperature, this research seeks to explore the uses of the nonlinear relationship. 
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3.3.1 Nonlinear Regression Model Background 

 The nonlinear regression model used in this research was developed by Mohseni et al. 

(1998) and is constructed to replicate the stream-air temperature relationship year round. The 

nonlinear relationship mimics increased evaporative cooling at high temperatures and freezing at 

low temperatures. A logistic function is chosen because of the stability of its parameters and their 

pseudo-representation of physical properties. The function (Equation 1) requires the input of air 

temperature data (Ta). The parameters include estimated maximum stream temperature (), air 

temperature at the inflection point (), and the steepest slope of the function () described by 

Equation 2, which includes the slope at the inflection point (tan ). The estimated minimum 

stream temperature () is also included to account for rivers that do not experience freezing. The 

functions may be applied separately to the rising and falling limbs of the air-stream temperature 

curve to account for the effects of hysteresis. Hysteresis is defined as the dependence of a system 

on the past environment as well as the present. 

𝑇𝑠 = 𝜇 + 
𝛼− 𝜇

1+ 𝑒𝛾(𝛽−𝑇𝑎)
      (1) 

𝛾 =  
4 tan𝜃

𝛼− 𝜇
       (2) 

Mohseni et al. (1998) applied the regression model on a weekly time step to 584 USGS stream 

gaging stations with air temperatures selected from the nearest of the 197 weather gaging 

Figure 2: Air to stream temperature relationship of a river in western Massachusetts. 
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stations. The model performed well with over 84% of all gaging stations having Nash-Sutcliffe 

Coefficient of Efficiency (NSC) values greater than 0.9. This NSC value is a common coefficient 

used to evaluate the prediction power in hydrologic models. Only 11 gaging stations (1.9%) were 

not well modeled by the S-shaped trend, having NSC values less than 0.7. Of these 11 stations, 8 

are located downstream of reservoirs, which significantly impact natural stream temperature 

regimes. Correlation between the parameters and mean stream temperatures were minimal, 

leading to the conclusion that, given no physical changes to the watershed, parameters would not 

require adjustment under climate change. The study also concludes that air temperature data do 

not need to be obtained from locations in close proximity to stream gaging stations. The 

proposed model is limited to streams with S-shaped air to stream temperature relationships. 

When the relationship does not follow this trend, the model cannot explain the scatter of the data 

and is unable to accurately predict stream temperature. Mohseni et al. (1998) also note that the 

model occasionally under predicts maximum weekly stream temperatures. They state that in 

these cases, the model cannot be used to study the impact of climate warming on maximum 

weekly temperature. 

 For this research, the nonlinear model was chosen for its simplicity, performance, and 

wide acceptance amongst previous stream temperature modeling efforts. The model is easily 

constructed and applied to a large number of locations with stream temperature logger data. At 

locations where sufficient monitoring data and regular conditions exist, the model tends to 

perform well. The model is frequently used as a baseline in numerous stream temperature studies 

as well as being integrated into other models to fill in gaps of missing data, such as headwater 

temperatures (Morrill et al. 2005, Yearsley 2012). For the reasons stated above, the widely 
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accepted non-linear regression model developed by Mohseni et al. (1998) serves as the 

foundation of the stream temperature modeling component of this research. 

3.3.2. Model Calibration  

The model described by Equation 1 is applied to all of the sites for which air and stream 

temperature data exist over 

a daily time step. The 

method described in the 

Meteorological Data 

section for pairing air 

temperature to stream 

temperature at each logger 

location is used for this 

model. The Shuffled 

Complex Evolution (Duan 

et al, 1992) global optimization method (SCE method) is used to fit the best parameters 

() for each dataset, yielding an optimal parameter set specific to each site. The SCE 

method is described as being efficient and effective procedure for computing optimal parameters 

in model calibration. This allowed all sites with a sufficient time series of paired stream and air 

temperature data to be fit with a model. Once the best fit parameters were calculated for each 

site, the sites were filtered for further analysis. A Nash-Sutcliffe Efficiency value of greater than 

0.9 and a modeled temperature regime that visually displays a clear S-shaped fit (Figure 3) were 

required for the site to become a candidate for further evaluation. Due to the limited temporal 

extent of monitoring for most sites, the model is calibrated over the entire period of record for 

Figure 3: Well calibrated nonlinear model at a site in western 

Massachusetts. 
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each site. The best fit sites with sufficiently long periods of record are evaluated under a 

calibration and validation process. This process involves removing a portion of the data points at 

random, and recalibrating the model to the remaining points.  

3.4. Basin Characteristics 

Once the nonlinear stream temperature model was established for use, the next step was 

to select characteristics of the drainage area upstream of each temperature data site that might be 

influential to the stream temperature regime. A number of landscape variables were selected to 

determine which ones might be most influential to basins in the region. The variables were 

chosen with the goal of representing the range of possible factors in determining stream 

temperature regimes while maintaining an easily accessible source for the data. Many additional 

potential variables exist, but the ones chosen were deemed most likely be important to the stream 

temperature analysis, based on the literature reviewed. The incorporation of these variables into 

the modeling structure is described in the next section.  

For each site that was deemed acceptable for further analysis, physical characteristics of 

the contributing watershed upstream of each site are aggregated using the delineated watershed 

(Section 3.2) Landscape attributes within the basin are calculated for each watershed. Table 3 

provides a summary of watershed characteristics and sources of the GIS data from which the 

summary values are calculated. The Baseflow Index (BFI) is defined by the USGS as “the 

component of streamflow that can be attributed to groundwater discharge into streams” and is 

represented as percent of total flow (Wolock, 2003). The land use variables obtained from The 

Nature Conservancy's Ecological Systems Map were condensed into 10 major categories for the 

purpose of simplified analysis (Olivero & Anderson, 2008). “Total aboveground biomass” and 

“stem density” (> 1 inch diameter) contain information obtained from Dr. McGarigal’s research 
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group in the Department of Environmental Conservation at the University of Massachusetts 

(Wilson et al., 1992). They are used in this research to represent forest cover in the watersheds. 

Characteristic Units Source Citation 

Drainage Area km2 USGS - National Elevation Dataset 
Gresch et al. 

(2009) 

Topography:    

USGS - National Elevation Dataset 
Gresch et al. 

(2009) 
    Elevation meters 

    Slope % 

    Aspect degrees 

Baseflow Index % USGS - GAGES II Wolock (2003) 

Soils:   

USGS - GAGES II Falcone (2003) 
    Sand % 

    Silt % 

    Clay % 

Total Aboveground Biomass tons/acre FIA Imputations 
Wilson et al. 

(1992) 

Stem Density Total/km2 FIA Imputations 
Wilson et al. 

(1992) 

Land Use:   

TNC - Ecological Systems Map 
Olivero & 
Anderson 

(2008) 

    Urban % of total 

    Agriculture % of total 

    Swampland % of total 

    Grass % of total 

    Peat % of total 

    Rock % of total 

    Deciduous Forest % of total 

    Oak-Pine Mixed Forest % of total 

    Boreal Forest % of total 

    Open Water % of total 

Historical Annual Averages (1980-
2010):   

PRISM Climate Group PRISM (2012) 

    August Mean Air Temperature oC 

    August Max Air Temperature oC 

    August Total Precipitation mm 

    February Mean Air Temperature oC 

    February Max Air Temperature oC 

    February Total Precipitation mm 

 

Table 3: Summary of data used for analysis. 
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3.5. Multivariate Analysis of Landscape Variables 

A key element of this research is to identify key predictors stream temperature and 

develop relationships that are useful in predicting temperatures in ungaged basins. An 

understanding of these variables also enhances our understanding of what physical factors 

influence stream temperature, aiding in identifying streams that might be resilient to climate 

change and garnering conservation efforts targeted at maintaining biodiversity. In examining 

these relationships, the analysis seeks to integrate well-calibrated stream temperature models and 

physical landscape data to guide managers in their understanding of the watershed attributes that 

will impact stream temperature. First, a step-wise regression comparing the landscape variables 

with the fitted model parameters is run to determine any possible correlation between the two. A 

principal component analysis is then performed to further this analysis and draw conclusions 

about significant factors of stream temperature. 

3.5.1. Stepwise Regression 

The first method used to evaluate a regionalization approach of the parameters is a 

stepwise regression of the calibrated parameters. The stepwise regression is performed as a 

preliminary evaluation of which basin characteristics are most important in determining stream 

temperature, specifically their impact on each model parameter. This semi-automated method 

was chosen because of the large number of variables used for analysis. The results, a list of the 

most significant variables, are easily understood and discussed. 

The stepwise regression process uses backward elimination, to remove variables based on 

their significance to each model parameter. A multivariate linear regression is run for each of the 

four parameters using all of the basin characteristics and locations. The basin characteristics are 

independent variables used as predictors of each parameter in the nonlinear model. The StepAIC 
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function in the R statistical computation program performs the stepwise regression through 

matrix multiplication of all of the independent variables with all of the betas of the linear 

regression. The best relationships are chosen by minimizing the sum of the squared error terms. 

A limitation of this approach is that the error term is reduced with more predictors added, 

creating a case where the most predictors allowed are used. The Akaike information criterion 

(Equation 3) is used to counteract this case by penalizing the model for more predictors.  

   =          ( )      (3) 

Where: 

 AIC = Akaike Information Criterion 

L = Sum of squared error terms 

 K = Number of predictors (independent variables) 

 

If the mean value is the best fit, all of the predictors will be dropped, conversely if certain 

variables are identified as significant, they are assigned beta values in an equation used to predict 

the model parameter. A sensitivity analysis is applied to the completed stepwise regression 

models to determine which variables have the most influence over parameter values. 

Stepwise regression overlooks correlation between variables. A correlation matrix of all 

basin characteristics used as variables was created with the purpose of determining if there is any 

false significance masked by a strong correlation between the variables themselves. This is 

presented in Appendix A. A principal component analysis is applied to the same data and used in 

a regression framework, as described below, to deal with the issue of multicollinearity. 
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3.5.2. Principal Component Analysis 

PCA is traditionally used when correlation exists between variables or to condense large 

datasets with many variables to explore the principle mode of variation. PCA transforms 

correlated variables into uncorrelated variables called principal components. The process uses 

the correlation matrix of all of the variables and assigns weights (loadings) to the correlations 

based on Eigenvalue decomposition. Each set of loadings across the variables are a different 

principal component, with the total number principal components being less than or equal to the 

number of variables. Stronger correlations are more heavily weighted. The samples are 

multiplied by these loadings to get the scores, or the transformed values for each data point for 

each variable. Each principal component accounts for a portion of the variability within the data. 

The most variability is described in the first principal component and continues to decrease down 

to the last component. In cases where variables total one, such as land use or soil composition 

percentages, a variable is removed. In this case percent clay, boreal forest, and rock were chosen 

because of their relatively small values. 

In this research, PCA is used for both exploratory analyses of the data, discussed here, as 

well as to predict stream temperature, described in the next section. The 23 landscape 

characteristics calculated for each basin are the variables used in the PCA. The PCA is run using 

all of the sites that meet the calibration criteria, 195 in total. Historic mean and maximum air 

temperatures during February and August are used to condition the regression for seasonal 

bounds. The results are used to illustrate which of the landscape variables are relevant to stream 

temperature.  
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3.5. Ungaged Basin Temperature Prediction 

 Stream temperature prediction at ungaged locations may be valuable in instances where a 

temperature estimate is needed, but data or access to the location is limited. Stream temperature 

prediction utilizing the PCA is explored and compared with other prediction methods. This 

comparison is used to determine the applicability of the PCA prediction method. 

3.5.1. Principal Component Analysis 

In addition to explaining which watershed attributes may impact stream temperature, the 

PCA is also used to generate a predictive stream temperature model. The calibration process 

initially yielded 160 sites across MA and CT that were deemed well-calibrated according to the 

criteria previously stated. The remaining 35 well-calibrated sites, from recently received data, are 

used to test the model.  

Linear regression models using the principal components as predictors are created for 

each of the 4 calibrated parameters. These parameters act as the observations while the PCA 

scores serve as the independent variables. Principal components that have the most significance 

to each parameter are selected for the final models. Scores from these select PCAs are re-run to 

obtain the completed linear models for each parameter. These 4 completed models accommodate 

input of values for the 23 physical characteristics which are first standardized using the following 

equation: 

  =  
 − 𝑒  ( )

𝑠    𝑒  ( )
      (4) 

Where:  

 SV = Standardized variable 

 V = Raw variable value 

C = List of variable values across all prediction sites 
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The standardized values are multiplied by the respective loadings to produce prediction scores. 

These new scores are then multiplied by the corresponding betas in each model and summed 

according to the model to obtain the predicted parameter. These parameters are input into the 

nonlinear model equation with observed air temperature at a site to obtain a prediction of stream 

temperature data. This process is completed for the 35 validation sites and compared with two 

simpler prediction methods. 

3.5.2. Mean Parameters 

The mean parameters method simply takes an average of all of the parameter values 

across a number of sites, usually all of the sites within the same state as the site of interest. The 

averages of these parameters are then input into the nonlinear stream temperature model with 

observed air temperature at the site to generate predicted stream temperature time series. 

3.5.3. Nearest Site Parameters 

The nearest site approach to predicting stream temperature simply takes the parameters 

from the site that is the shortest distance from the site of interest. As is consistent with the other 

prediction methods, these parameters are input into the nonlinear model with observed air 

temperature at the site to predict stream temperature. 

3.6 Breakpoint Analysis for Hysteresis 

When analyzing the stream temperature regime it is necessary to understand the impact 

of hysteresis on the nonlinear distribution of stream temperatures at a location. Mohseni et al. 

(1998) account for hysteresis in their model by placing the data into two categories: the rising 

(warming) and falling (cooling) temperature limbs. The breakpoint where the time series is 
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divided falls at a somewhat arbitrary point during the summer. This research devises a method to 

consistently select this point based on the data available with the goal of accurately capturing the 

impact of hysteresis on the distribution of the air to stream temperature ratio. 

For the entire period of record at each site, a simple linear regression model is defined 

with stream temperature as the response and Julian day of year as the explanatory variable. 

Segmented regression is used to categorize the relationship in this model into the periods of 

rising and falling stream temperature. Nonlinear models are then fit separately to the rising and 

falling limbs of the air to stream temperature distribution. This version of the model is validated 

in the same way as the year-round model and incorporated into the stepwise regression to 

investigate how parameters may influence stream temperatures at different times of the year. 
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4. Results 

 The nonlinear stream temperature model is calibrated to each of the 905 stream 

temperature sites. 195 sites with the best calibration results are selected for further analysis. The 

sites with the longest record are used to validate the prediction power of the nonlinear model. 

The inclusion of hysteresis was found to provide negligible improvement to the model. After the 

nonlinear model is analyzed, it is utilized in multivariate analysis to inform which of the 

previously discussed basin characteristics impact stream temperature. 

 Results from the multivariate analysis show that alpha is predicted with the most 

accuracy and mu with the least. Model results for alpha, theta, and beta are good enough to allow 

conclusions to be drawn about each, potentially providing important information to natural 

resources managers. A sensitivity analysis of variables from the stepwise regression shows 

summer and winter air temperatures, forest coverage, soil properties, and elevation as being 

important to the air to stream temperature relationship. Principal component analysis results are 

summarized and examined more closely in the Discussion section. Results from the PCA 

prediction model validate this method as a viable method for predicting the nonlinear model 

parameters, but does not display improvement over simpler regionalization methods. 

4.1. Nonlinear Model Calibration 

4.1.1. Calibration 

The nonlinear stream temperature model is fit to the full stream temperature record 

available for each site (905 sites across New England), using the SCE method to optimize model 

fit. Calibration results vary largely based on the period of record, seasonal distribution of data, 

and availability of paired air temperature data at a given site. Sites with observed stream 
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temperature measurements 

spanning both warm and cold 

seasons and having consistent 

air temperatures tend to have 

the best calibration results. 

Given the variations in the data 

mentioned above, the initial 

calibration, which encompasses the full range of sites, is used to select the most appropriate sites 

for further analysis. The distribution of calibration metrics (NSC value and RMSE) is presented 

in Figure 4. 32% of the sites have an NSC over 0.9, 57% over 0.8, and 70% over 0.7. As 

mentioned in the Methodology section, the best sites for further analysis were chosen based on 

the criteria of an NSC above 0.9 and an S-shaped model fit to the data. This selection process 

yields 195 sites chosen for further analysis, which have an average NSC of 0.944 and RMSE of 

1.55 
o
C. Many of the 

original sites, including 

all of those located in 

New Hampshire, were 

eliminated because of 

seasonal data gaps over 

the winter months. A 

handful of other sites 

were removed because of 

insufficient paired air 

Figure 4: Distribution of calibration metrics for all 905 stream 

temperature sites. 

Figure 5: Locations of all 905 sites (left) and 195 best-fit sites (right). 
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temperature data. These were sites that did not already have paired air temperature and had most 

or all of their record after 2010, and thus were unable to be paired with the data from Maurer et 

al. (2007).  Figure 5 shows the spatial distribution of all the stream temperature data locations.  

4.1.2. Validation 

 A validation process is used to determine the ability of the nonlinear model to predict 

stream temperature. Twenty-six sites in Massachusetts with long periods of record (~3 years) are 

chosen for the validation 

process. At each site, one third 

of the stream temperature data 

are removed from the period of 

record and the model is 

calibrated to the remaining two 

thirds of the data. The new 

parameters are then used to 

validate the model to the 

removed temperature points. 

Calibration using two thirds of 

the data yields average values of 0.943 and 1.58 
o
C for NSC and RMSE, respectively. The same 

metrics for the validation process are 0.934 and 1.65 
o
C. A comparison of parameters from the 

calibration and validation results is shown in Figure 6. Figure 7 shows how the difference in 

parameters between the full period of record calibration and the validation is reflected in the 

Nash-Sutcliffe Efficiency. It is noted that in the validation process, as in standard calibration, a 

spread of data points across warm and cool seasons is critical to a good calibration. This aspect 

Figure 6: Nonlinear model validation results. "Observed" 

parameters are from the full period of record calibraiton 

and "Predicted" are from the validation process. 
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made a noticeably greater difference in model performance than the proportion of the sites 

removed for validation. The validation results confirm faith in the model’s prediction power.  

 

  

Figure 7: Changes from the standard calibration in parameters calculated in 

validation process. 
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4.1.3. Hysteresis 

 The same validation process is applied to 

the models developed from the breakpoint analysis 

that account for hysteresis. Using the methods 

described earlier for determining the rising and 

falling limbs of the stream temperature 

distribution, summer breakpoints are defined for 179 of the 195 well-calibrated stream 

temperature sites. Based on these breakpoints, nonlinear models are fit to the observed stream 

temperature over both rising and falling limbs (Figure 8).  The warming period is from January 

1
st
 to the summer breakpoint, while the cooling period includes all points from the summer 

breakpoint until December 31
st
. Average calibration results for the rising, falling, and year-round 

models are summarized in Table 4. The inclusion of hysteresis provides only a minor change to 

the accuracy of the model. 

The spread of nonlinear 

model parameters in these 

different methods shows 

some minor differences. 

Average mu and beta values 

remain about the same, while 

alpha values slightly increase 

for the falling limb. Theta 

increases for the rising limb 

and decreases for the falling 

Table 4: Calibration metrics for model 

methods across the 179 sites with breakpoints. 

Model NSC RMSE (oC) 

Year-round 0.948 1.44 

Rising 0.951 1.49 

Falling 0.940 1.38 

Figure 8: Example of a calibrated nonlinear model split into rising 

and falling limbs at a site in western CT. 
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limb of the hysteresis model. The parameter distributions are visually compared in Appendix C. 

Validation is also applied to the hysteresis method over the previously selected 26 sites in 

MA with long periods of record. One third of the data points in each time series were removed 

and parameters were calibrated to the remaining two thirds of the data. Results of this process 

(Table 5) verify that the hysteresis method is viable; however it does not appear to improve the 

accuracy of the model by any significant degree. Accounting for hysteresis in the model does 

allow for the analysis of how landscape variables may separately impact the warming and 

cooling phases of stream temperature throughout the year, which is examined using stepwise 

regression in the next section. With the nonlinear model validated and the impact of hysteresis 

tested, multivariate analysis of the basin characteristics impact on model parameters can be 

investigated with the goal of providing useful information to resource managers. Understanding 

the factors that impact stream temperature regimes will allow for informed decisions on 

conservation efforts. 

4.2. Multivariate Analysis 

4.2.1. Stepwise Regression 

The stepwise regression method is used to examine which physical properties influence 

stream temperature through a comparison of the complete-year, rising, and falling temperature 

model parameters regressed against basin 

characteristics. The adjusted R
2
 values for the 

stepwise regression models for each model 

parameter are presented (Table 6). There is 

minimal difference in the prediction qualities 

Table 5: Calibration results of hysteresis 

model validation. 

  NSC RMSE (oC) 

Year Round 0.939 (0.942) 1.61 (1.60) 

Rising 0.929 (0.938) 1.47 (1.46) 

Falling 0.947 (0.946) 1.36 (1.38) 
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between the 3 nonlinear model types, aside from the decline of R
2
 values for both alpha and theta 

in the falling limb models. 

  

 

 

The results from the stepwise regression comparison also show that there is limited 

deviation between the significant basin characteristics across the rising, falling, and year-round 

model fits. These results are shown in full in Appendix A. This may occur because a number of 

the variables used in the stepwise regression are correlated. A correlation matrix of these 

parameters is also available in Appendix A. 

According to the stepwise regression, a positively correlated urban area remains the most 

significant factor of estimated minimum stream temperatures across all 3 model types. Its 

influence is twice as large in falling and year-round models as in the rising model, possibly 

because annual mean daily minimum temperature is not necessarily reached before the winter 

breakpoint on January 1
st
. Further investigation of the variation associated with the breakpoint is 

warranted. The consistently negative correlation with drainage area as well as the significance of 

soil type also suggests the influence of travel time and groundwater signal on minimum stream 

temperature. Prediction of this parameter is the least accurate (Table 6). The limited 

effectiveness of this parameter prediction is considered in the Discussion. 

A sensitivity analysis is completed using the final stepwise regression models for the 

alpha, theta, and beta parameters to determine the sensitivity of each to changes in variable 

values. Mu is omitted from this analysis because of its poor prediction ability. The change on the 

Model Year-round Rising Falling 

Estimated minimum temperature () 0.248 0.256 0.236 

Estimated maximum temperature () 0.546 0.490 0.320 

Slope of the function at the inflection point () 0.458 0.424 0.226 

Temperature at the inflection point () 0.403 0.343 0.347 

Table 6: Adjusted R
2
 values for model parameters in the stepwise regression analysis. 
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three parameters is measured for the variables that were highlighted in the stepwise regression 

results (Appendix A). Tables 7-9 show the impacts of select variables on the parameters.  

 

Table 7: Sensitivity of the Alpha parameter to the five most influential variables. 

 

Maximum stream temperature is consistently sensitive to drainage area and maximum 

August air temperature throughout the year (Table 7). Larger drainage area strongly indicates 

higher maximum stream temperatures.  A counterintuitive relationship occurs in the negative 

correlation between August maximum air temperature and maximum stream temperature. The 

remaining three most influential variables are all related to forest coverage, and negatively 

correlated with maximum stream temperature, suggesting that shading plays an important role in 

determining stream temperature.  

Quartile Elevation 
Deciduous 

Forest 
Oak-Pine Mixed 

Forest 
February Mean Air 

Temp. 
February Max Air 

Temp. 

Min -19.5% -14.3% -13.6% 74.6% -90.7% 

Q1 -5.5% -6.8% -13.0% 19.9% -15.8% 

Median - - - - - 

Q3 5.9% 15.6% 7.0% -5.2% 6.9% 

Max 39.9% 22.1% 14.8% -43.8% 61.0% 

Table 8: Sensitivity of the theta parameter to the five most influential variables. Theta is nearly 

as sensitive to August maximum temperature and swampland as it is to the Oak-Pine forest. 

 

Based on the sensitivity analysis, the slope of the function at the inflection point depends 

most on elevation, forest cover (deciduous and mixed oak-pine forests), and February 

Quartile 
Drainage 

Area 
Stem 

Density 
Deciduous Forest 

Oak-Pine Mixed 
Forest 

August Max Air 
Temp. 

Min -1.9% 9.8% 10.2% 14.1% 11.6% 

Q1 -0.8% 1.1% 4.8% 13.5% 1.3% 

Median - - - - - 

Q3 1.8% -4.8% -11.2% -7.3% -0.8% 

Max 20.9% -17.5% -15.8% -15.4% -6.3% 
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temperature variables (Table 8). Increased elevation, forest coverage, and maximum February air 

temperatures all result in the air to stream temperature relationship being more nonlinear. 

Conversely, increased mean February air temperature results in a more linear function over all 

three models. Elevation loses significance in the rising limb model, while forest coverage does so 

in the falling limb. The consistent loss of significance in the falling limb by forest coverage may 

be an indication of the importance of shading to the system. In this period, deciduous trees drop 

their leaves and shading is reduced.  

Quartile % Sand % Silt 
August Mean Air 

Temp. 
August Max Air 

Temp. 
February Max Air 

Temp. 

Min -44.6% -44.8% -41.6% 63.2% -61.1% 

Q1 -13.1% -3.1% -7.4% 7.2% -10.6% 

Median - - - - - 

Q3 3.9% 14.6% 1.7% -4.5% 4.6% 

Max 52.2% 47.7% 23.6% -34.1% 41.1% 

Table 9: Sensitivity of the beta parameter to the five most influential variables. 

The temperature at the inflection point depends most on the soil properties and air 

temperatures in both February and August (Table 9). Percent sand and silt both lose significance 

in the falling limb, indicating that groundwater influence over the mean temperature of stream 

system is greater in the spring and first half of summer. 

The stepwise regression outlines some important variable-parameter relationships in the 

region. Sensitivity analysis is used to determine which variables have the most influence over the 

parameters. Summer and winter air temperatures, forest coverage, soil properties, and elevation 

stand out as being the most important variables to the air to stream temperature relationship. 

Principal component analysis is used to further explore the effects of watershed characteristics 

on stream temperature. 
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4.2.3. Principal Component Analysis 

 PCA is used to explore the modes of variability 

across watershed physical characteristics. Figure 9 

presents the proportion of the total variance explained by 

each principal component using the basin characteristics 

of 195 calibrated sites. Over 70% of the variance is 

explained by the first four principal components. The 

first principal component (PC1) explains 44% of the 

total variance and is dominated largely by air 

temperature, soil type, and forest cover. Principal component 2 ( ~10% of the total explained 

variance) is governed by land cover types including swampland, agriculture, surface water, and 

peat land, as well as winter precipitation. A biplot is used to display the breakdown of variable 

significance on the combination of these two principal components (Figure 10). A biplot is a 

visual representation of the variable relationships of the first two principal componenets, which 

in this case explain 55% of the variance. The red arrows represent the loadings on each variable, 

which correspond to the bottom and left axes. The points represent the scores for each principal 

component. The angle between any two variables can be thought of as their correlation with each 

other. For example, in the biplot, air temperatures are highly correlated with each other. Linear 

models are fit using the PCs as the independent variables and each of the four nonlinear 

parameters. The PCs are uncorrelated by their nature (orthogonal in space) allowing all the PCs 

to be included in the regression if necessary. The parameter mu depends most on principal 

component 7, but the model fit for this parameter is poor. This issue is expored further the 

Discussion section. Principal components 1, 2, and 3 are the most influential predictors of alpha, 

Figure 9: Proportion of variance 

explained by principal components. 
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while variability in theta is mostly 

explained by PCs 2 and 9. Model 

parameter beta is most strongly 

correlated with PCs 1, 3, and 5. 

Table 10 summarizes the most 

significant principal components 

and their loadings. The 

implications of these relationships 

are examined in the Discussion 

section. A complete summary of 

the PCA results can be found in 

Appendix B. 

 

Table 10: Loadings in the important principal components for describing Mu, Theta, Beta, and 

Alpha. 

  

Rank

1 FebMaxAir 0.303 Swamp -0.443 DA 0.491 Grass 0.492 Urban -0.5 DA 0.553

2 FebMeanAir 0.297 Agro 0.389 Water 0.381 Aspect -0.421 Peat 0.486 Biomass 0.508

3 AugMeanAir 0.297 FebPrcp -0.378 Biomass -0.317 Urban 0.391 AugPrcp -0.411 Sand 0.301

4 Elev -0.288 Water -0.31 Slope 0.276 Water -0.286 Slope 0.35 Silt -0.291

5 Stem -0.287 Peat -0.284 Grass 0.274 FebPrcp 0.27 AugMaxAir 0.199 AugPrcp 0.26

6 AugMaxAir 0.286 Aspect -0.247 FebPrcp -0.256 BFI -0.261 Elev -0.172 Decid 0.217

7 Silt -0.27 Slope 0.246 BFI -0.216 Oakpine -0.242 Water 0.146 Oakpine -0.2

8 Sand 0.263 DA -0.205 AugPrcp 0.207 Peat 0.222 Oakpine 0.145 Peat 0.195

9 Decid -0.252 BFI -0.165 Sand -0.202 AugMaxAir 0.152 FebMaxAir 0.143 Urban -0.146

10 BFI 0.238 AugPrcp 0.157 Silt 0.185 Elev -0.129 Sand -0.132 FebPrcp -0.144

11 Oakpine 0.218 Oakpine 0.148 Aspect 0.184 Stem -0.118 AugMeanAir 0.13 Water -0.096

12 Slope -0.199 Biomass 0.14 Swamp -0.164 Silt 0.104 Silt 0.125 Slope 0.079

13 Urban 0.196 Stem -0.118 Urban 0.146 Sand -0.092 Swamp -0.114 Aspect -0.078

14 Swamp 0.145 AugMeanAir 0.115 Agro -0.144 AugPrcp -0.085 Grass 0.1 AugMaxAir 0.042

15 FebPrcp -0.144 FebMeanAir 0.105 Peat -0.138 Decid 0.084 FebMeanAir0.088 Elev 0.033

16 AugPrcp -0.138 AugMaxAir 0.101 Stem -0.058 FebMaxAir 0.065 Biomass 0.064 AugMeanAir 0.031

17 Biomass -0.135 Urban -0.081 FebMeanAir 0.037 Agro 0.048 Stem 0.056 Agro -0.025

18 DA 0.107 FebMaxAir 0.076 AugMeanAir 0.035 DA 0.034 Decid 0.035 FebMaxAir 0.02

19 Water 0.05 Decid -0.071 Decid -0.032 Swamp 0.03 FebPrcp 0.027 Stem -0.014

20 Peat -0.05 Sand -0.067 Oakpine 0.031 AugMeanAir 0.028 DA -0.026 BFI 0.01

21 Grass 0.034 Grass -0.056 AugMaxAir 0.027 Biomass -0.027 Agro -0.016 FebMeanAir 0.005

22 Agro 0.025 Silt 0.046 FebMaxAir 0.015 FebMeanAir -0.012 BFI 0.016 Grass -0.004

23 Aspect 0.007 Elev 0 Elev -0.008 Slope 0.004 Aspect 0.007 Swamp 0

PC1 (44.3%) PC2  (10.8%) PC3 (8.3%) PC5 (5.5%) PC9 (2.7%) PC12 (1.6%)

Figure 10: Biplot of principal components 1 and 2. 
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4.3 Temperature Prediction 

It is important to 

compare the temperature 

predictions of various 

regionalization methods to 

assess viability of predicting 

stream temperature at ungaged 

basins. The parameters 

calculated from the PCA 

prediction method are used to 

shape the nonlinear model to 

the observed stream temperature data (Figure 11). This is performed across the 160 sites used to 

calibrate the prediction model as well as the 35 sites used for validation. The results are 

compared with the mean and nearest site parameter prediction methods, as well as with the 

standard calibrated nonlinear model results (Figure 12). The comparison results validate the PCA 

prediction model as the best overall regionalization strategy. This prediction method provides the 

potential for future prediction of stream temperatures at a site without observed stream 

temperature. Further application of this model is described in the next section.  

Figure 11: Stream temperature predictions for different 

methods at a site in western MA. 
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Figure 12: Calibration and validation results of the PCA stream temperature 

predication model. 
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5. Discussion 

5.1. Physical Properties Impacting Stream Temperature 

5.1.1 Principal Components 

To understand the relationship between landscape characteristics and stream temperature, 

the most important principal components are examined. The important PCs are determined based 

on their influence over the quality of fit of the model, measured by adjusted R
2
. Five principal 

components are individually evaluated by the weight of the landscape variables based on their 

loadings. This is done by describing each principal component as a watershed that may be 

characteristic of the most influential variables present. Analyzing the important variables that 

influence each mode of variation will help in understanding how they contribute to a particular 

parameter’s effect on stream temperature.  

Principal Component 1 

Principal Component 1 is comprised of physical characteristics that would typically 

describe a warm, lowland watershed with limited forest coverage and a significant groundwater 

contribution to streamflow. This description is attributed to positive PCA loadings on air 

temperatures as well as percent sand and BFI and negative loadings on elevation, vegetation 

coverage, and percent silt.  

Principal Component 2 

Smaller, dryer basins with agriculture and small groundwater contribution appear to 

comprise principal component 2. Negative loadings on land cover classifications associated with 

surface water as well as historic February precipitation and BFI values explain this principal 

component. Large positive loadings exist on agriculture and average basin slope. 
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Principal Component 3 

 Principal component 3 is best described by large, open basins with more surface water 

and less groundwater and forest coverage. Positive loadings on drainage area, slope, surface 

water, and grassland and negative loadings on total aboveground biomass, BFI, and percent sand 

summarize this mode of variation. 

Principal Component 5 

 Open or impervious land cover associated with less groundwater and more precipitation 

summarizes principal component 5. There are positive loadings on grassland, urban area, and 

winter precipitation, with negative loadings on surface water, BFI, and mixed oak and pine 

forests.  

Principal Component 9 

 Principal component 9 can be described simply as low and likely wet areas with warm, 

dry summers. These basins may also contain some relatively steep slopes. Positive loadings on 

surface water and peatland and a strong negative loading on urban area suggest the land cover 

make up. 

5.1.2. Estimated Maximum Stream Temperature () 

The PCA regionalization regression explains 0.526 (R
2
) of the variability exhibited in the 

alpha parameter (Figure 13). The variability of the alpha model parameter is explained by 

principal components 1, 2, and 3, having a positive relationship with all but PC 2. Examining the 

relationships with each principal component allows conclusions to be drawn about the impacts 

maximum stream temperature. 
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The description of basins common to 

principal component 1 is fairly consistent with 

higher maximum stream temperatures. Air 

temperatures, both in August and February, are 

found to have a positive correlation with alpha 

values. The relationship with August 

temperatures is straightforward as this is the 

time of year when temperatures are highest and 

hysteresis is more likely to affect the system. 

The average summer breakpoint date of August 2
nd

 supports this notion. The influence of 

elevation on maximum stream temperature can be attributed to the adiabatic lapse rate, where air 

temperature tends to decrease with increased elevation. This attribute translates to warmer air 

temperatures in basins at lower elevations, linking elevation to the relationship between air and 

stream temperature. The positive relationship with February air temperatures is slightly less 

obvious viewed in the context of the negative relationship between February precipitation and 

maximum air temperature. This relationship suggests the power of hysteresis over the system 

resulting from snowpack in the previous winter. The results seem to suggest that a warm, dry 

winter may result in a greater maximum stream temperature later in the year.  

Surprisingly, the groundwater influence in this principal component seems to be 

positively correlated with stream temperature, disagreeing with the literature which defines 

groundwater as a moderating factor of stream temperature year round (Poole et al, 2001). It is 

possible that the variables representative of groundwater contribution, which exist as average 

values, impact the system at a different time of year than maximum stream temperature occurs. 

Figure 13: PCA regression model for 

alpha parameter. 
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This may also indicate that BFI is not a good index of groundwater’s impact on stream 

temperature. 

Finally, the limited forest coverage in the basins described by PC1 likely results in 

reduced shading to the system by riparian cover. The PCA results agree with those from the 

stepwise regression which has a negative correlation between alpha and forest coverage, 

specifically in the half of the year when temperatures are warming. This is supported by the 

findings of Bowler et al. (2012) which conclude from the literature that maximum stream 

temperatures are lower in systems with riparian shading than those without. 

Principal component 2 is negatively correlated with estimated maximum stream 

temperature. The notion that small, dry, agricultural basins reduce maximum stream temperature 

can be supported by the idea that a shorter travel time does not allow the system to be exposed to 

climatic drivers long enough to be warmed as much as other basins. More rapid runoff over 

steeper slopes, and possibly from agriculture, as well as limited surface water explains this mode 

of variability. The rapid movement of the water through the system does not allow as much time 

to warm as basins with shallower gradients and more residence time in surface water sources. 

These findings are consistent with the concepts set forth by Mayer et al. (2012) and Subehi et al. 

(2009). 

Principal component 3 has the most straightforward explanation. Large, open basins with 

surface water should theoretically have greater travel time in the system. This relationship is 

supported by the results from the stepwise regression which shows a positive correlation between 

alpha and drainage area across all three model types. In the summer months, this equates to 

greater heat energy flux into the system, which is further permitted by the reduced canopy 

coverage and shading associated with total aboveground biomass that is lacking in this type of 
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watershed. Furthermore, the small groundwater influence eliminates another source of 

temperature moderation. 

The stepwise regression and PCA results provide an understanding of the variables that 

impact the maximum stream temperature. Air temperature, particularly summer air temperature, 

plays an important role, remaining positively correlated with the alpha parameter. Drainage area 

is another notable variable that is positively correlated with maximum stream temperature. 

Groundwater influence appears to be influential to the alpha parameter, but has the opposite 

effect than expected. This may indicate that BFI is not a good measurement of the effect of 

groundwater on stream temperature. Finally, forest cover is a significant factor in determining 

maximum stream temperatures. Although some uncertainty exists in the PCA results, a majority 

of the analysis indicates that forest cover is negatively correlated with maximum stream 

temperature, supporting the idea that shading will reduce stream temperatures overall. 

5.1.3. Slope of the Function at the Inflection Point () 

 The theta parameter 

characterizes the slope of the 

nonlinear function at the 

inflection point and is one of 

the more informative 

parameters to resource 

managers. Theta determines 

the degree of nonlinearity of 

the air to stream temperature 

relationship. A greater theta 

Figure 14: Example of varied theta parameter on the nonlinear model 

function. 
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value decreases the linearity of the relationship and the 

presence of a top and bottom threshold at which stream 

temperature undergo a change over just a few degrees of 

air temperature (Figure 14). It can be inferred that 

principal components with a negative correlation with this 

parameter produce a more linear relationship. If the fit to 

the relationship is good, linearity suggests that air and 

stream temperatures are in sync for a longer period of 

time. Variables with a positive correlation with theta indicate a stream temperature influence 

external to the air temperature relationship, such as groundwater or thermal influx from 

anthropogenic sources. The predictive power of this model had an adjusted R
2
 of 0.370 and the 

modeled vs. observed values are plotted in Figure 15.  

 Both of the principal components in the regression have a negative relationship with 

theta, suggesting that basins typical to these PCs will result in a more linear air to stream 

temperature relationship. The small, dry basins of PC2 have less groundwater inflow which 

supports the notion of increased function linearity. Lower February precipitation, indicating 

reduced snowpack, indicates a weaker mode of hysteresis coming out of the winter season, 

which translates to a more linear relationship. The lack of surface water such as lakes, ponds, and 

swampland could mean a more constant exposure to climatic drivers, particularly air 

temperature, which will also keep the relationship more linear. This last relationship is in 

agreement with the stepwise regression which shows a significant, positive correlation between 

swampland and theta. 

Figure 15: PCA regression model for 

theta parameter. 
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 Principal component 9 has the same impact on function linearity, despite the fact that it 

differs from PC2 in that it is more likely to have more surface water. The large negative loading 

on urban area however indicates that nonlinearity may be intensified by anthropogenic input. The 

strong correlation of non-linearity of the function with August precipitation should also be noted. 

 Winter meteorological conditions, elevation, groundwater, and forest coverage are 

important variables in determining the linearity of the air to stream temperature relationship. 

Correlations with some of these factors, particularly winter temperatures, vary. A consistent 

exposure to air temperature with minimal interference from other drivers indicates linearity of 

the relationship. This parameter is important to understanding how the stream temperature 

regime in a basin might react to anthropogenic changes such as urbanization or deforestation.  

Knowing the factors that affect the linearity of the air/stream temperature relationship can 

be helpful to natural resource managers assessing the impacts of climate change. Streams with 

limited external temperature drivers are likely to have a more linear relationship meaning that 

increased air temperatures will be more influential over the stream temperature regime. This 

information is important in determining conservation targets of a particular fish located in 

watersheds characteristics impacting theta. One hypothetical situation might be the presence of 

brook trout in a watershed with a strong nonlinear relationship (larger theta). If air temperatures 

are predicted to increase where incipient stream temperatures are likely to be reached more 

frequently, this research would suggest conservation efforts focus on protecting groundwater 

sources and shading in this basin. Furthermore, a comparison of theta values and the relevant 

basin characteristics between watersheds would allow efforts to focus on one basin over another. 

Knowledge of the factors impacting the linearity of the air to stream temperature relationship can 

be used by resource managers to aptly define conservation targets. 
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5.1.4. Temperature at the Inflection Point () 

 The beta parameter 

is the air temperature at the 

inflection point. This value 

represents a shift in the 

mean water temperature of 

a stream. A lower beta 

value indicates stream 

system which will begin 

warming at lower air 

temperatures. Higher beta 

values indicate a tendency of the stream system to remain at a cooler temperature and will 

require much higher air temperatures to warm the stream (Figure 16). The beta values can also 

be an indication of how hysteresis impacts the rising and falling limbs of the function. Under the 

rising and falling limb models, an increased beta 

value will emphasize hysteresis on the cool end of 

the temperature spectrum, while a decreased value 

will suggest stronger hysteresis on the warm end. 

Watersheds typical of principal 

components 1, 3, & 5 all appear to have a strong 

positive correlation with beta, indicating that they 

have a tendency toward cooler overall stream 

temperatures. The predictive power of this model 

Figure 16: Results of varied beta parameter on the nonlinear model 

function. 

Figure 17: PCA regression model for the 

beta parameter. 
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had an adjusted R
2
 of 0.320 and the observed versus modeled values from the regression are 

shown in Figure 17.  

Principle component 1 does not seem to agree with the stated effect of beta, lowland 

basin with warm air temperatures would not contribute to cooler average stream temperatures. 

The strong groundwater component however, may be the most important variable, keeping 

stream temperatures cool despite warming air temperatures. Additionally, limited surface water 

bodies would mean reduced travel times, and relatively short exposure to heat flux into the 

system. Without these features in the basin, there are fewer sources that would continue to 

contribute warmer temperature as air temperature decreases.  

 The other two principal components differ in that they both have a less significant 

groundwater component. PC 3 suggests that increased drainage area, more surface water and less 

biomass and February precipitation are conditions that will require warmer air temperatures to 

heat the stream system. This leads to some uncertainty as to what features in this mode of 

variation may contribute to warmer basin temperatures. In principal component 5, the lack of 

surface water and increased February precipitation somewhat agree with the notion that these 

systems will require warmer air temperatures to heat the system. The relatively open landscape 

(more grassland and urban area), which might suggest warmer system, causes more confusion 

with this parameter. 

 Initial results from the stepwise regression show that groundwater is clearly a prominent 

variable, with both sand and silt being positively correlated with beta. This might support that 

idea that basins with more groundwater influence require warmer air temperatures to heat the 

system, but the uncertainty behind the groundwater and soil property relationship limits the 

conclusions that can be drawn. This analysis also shows that beta seems to increase with higher 
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mean summer air temperatures, but decrease with higher maximum summer air temperatures. 

Overall, the factors contributing to the beta parameter are the least understood from this analysis. 

5.1.5. Estimated Minimum Stream Temperature () 

 The PCA results for estimated minimum stream temperature showed minimal predicative 

power. The adjusted R
2
 of the linear model was 0.038, making the model of no value in 

parameter prediction. Of the 195 sites included in the PCA, 181 had mu values less than 0.1
o
C 

and 8 more had values under 1
o
C. The poor fit is likely due to streams in the region having 

minimum mean daily temperatures around 0
o
C. Only 3 of the sites with non-zero estimated 

minimum stream temperatures fall outside of the state of Connecticut. While it is unfortunate 

that there is little to be said about the landscape variables that may impact minimum stream 

temperatures, it is relatively safe to assume that mu can be predicted as 0
o
C across the northeast 

region, with greater confidence outside the southern-most states. Results from both the stepwise 

regression and PCA agree that urban area coverage increases the minimum stream temperature. 

However, model results cannot be relied on because of the poor fits and further analysis of the 

impact of urban area on minimum stream temperature is needed before conclusions may be 

drawn. 

5.2 PCA Stream Temperature Prediction Model 

 The stream temperature prediction model developed using PCA has potential for use in 

areas where observed stream temperature data may be limited. The physical properties included 

in the prediction model are relatively easily obtained over a large scale area. Utilizing these 

existing data to drive the model at an ungaged site is significantly less time consuming and labor 

intensive than gage installation at the desired location. The method developed may be useful for 

situations where an estimate of stream temperature is needed on a daily or weekly timescale. 
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This is the case in the application of one physical stream temperature model (Yearsley, 2011), 

where the nonlinear model is used to determine initial conditions for the physical model at 

headwater locations. The model is simple to construct and, providing sufficient coverage of sites 

throughout the region of interest, predicts stream temperature at a level of accuracy comparable 

to that of the nonlinear model calibrated to observed temperature.  

 The model may also be used to assess the impacts of anthropogenic changes to stream 

temperature regimes in the region. Climate change and urbanization are likely to be the major 

contributors to temperature regime change in the future. Understanding how these factors impact 

stream temperature will be critical in assessing which watersheds may be more resilient to 

changes.   
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6. Conclusion 

Stream temperature regimes are dependent upon physical processes influencing the 

hydrology of the watershed. These processes fall into the groupings of climatic drivers, 

groundwater influence, riparian vegetation, land use in the basin, and channel morphology. As 

stream temperature is a crucial factor of ecosystem health, understanding these factors is critical 

step to understanding how changes to the system may impact ecosystem vulnerability. 

 A nonlinear stream temperature model developed by Mohseni et al. (1998) is applied to 

905 sites throughout the northeastern US, yielding 195 sites appropriate for further analysis.  The 

average NSC for the nonlinear model across 195 sites is 0.948. Accounting for hysteresis in the 

system returns NSC values of 0.951 and 0.940 for rising and falling limbs, respectively. A 

principal component analysis and stepwise regression are performed on each of the 4 calibrated 

nonlinear model parameters against 23 landscape variables with the purpose of determining 

which watershed characteristics may be significant factors in determining the stream temperature 

regime. 

 Five principal components are defined as having the most significant influence over 

stream temperature regimes in the region. Not surprisingly, mean and maximum air temperatures 

showed a strong correlation with the parameters, particularly estimated maximum temperature. 

Temperature significance of winter temperatures and precipitation on this parameter suggests 

hysteresis in the systems, possibly resulting from the annual snowpack. 

 Interpretation of the regression results also points to groundwater as an important factor 

on stream temperature regimes, although the results seem to show mixed signals on how it will 

impact maximum temperatures. This inconclusiveness is not surprising due the difficulty in 

accurately quantifying groundwater in hydrologic systems. The most that can be said about 
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groundwater from this research is that it possibly contributes to hysteresis on the cooler end of 

the temperature spectrum, however further research is required to make any definitive 

statements. 

 Exposure to solar radiation, specifically resulting from travel time (drainage area and 

slope) and perceived degree of shading, supports the findings from the reviewed literature. 

Increased forest cover, measured by total aboveground biomass, stem count, and forest type is 

found to be correlated mostly with reduced maximum stream temperatures. Travel time is also 

positively associated with this parameter, suggesting longer exposure to climatic drivers 

increases the maximum stream temperature. A consistent, uninterrupted exposure to these drivers 

may also mean a more linear relationship between air and stream temperature. 

 Finally, increased urban area coverage is found to increase non-linearity of the model 

function. The specific sources are not covered in this research and further investigation will be 

required to understand the precise impacts of different factors associated with urban development 

on stream temperature. A more nonlinear air to stream temperature relationship was also found to 

be associated with the presence of more drivers external to air temperature, mainly forest 

coverage and groundwater influence. This information is useful in defining conservation targets, 

specifically which basin characteristics to protect in certain basins.  

Based on this research, changes to any of the significant variables (air temperature, 

groundwater, shading, travel time, and urban area) in a watershed are likely to result in alteration 

of the stream temperature regime. Climate change, logging, land development, and streamflow 

regulation are just some of the possible anthropogenic influences that target these vulnerabilities. 

Preservation of biodiversity in the Northeast riverine systems depends upon the understanding 

and accounting for how human action will impact these stream temperature variables. 
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7. Future Work 

 This research has generated some insight on the continuation of effort to understand 

stream temperature. Further studies, including a specific analysis of urban area and riparian 

coverage in the region, would be helpful in understanding their impact on stream temperature. 

The literature is virtually unanimous that increased urban area increases stream temperature and 

riparian canopy coverage maintains the natural regime. While this analysis touches on these 

variables, more specific data included in the analysis performed in this research may provide 

valuable information on how these factors impact aspects of the stream temperature regime. A 

better estimate of groundwater contribution and the inclusion of flow-rate are two more variable 

additions that would likely improve results. Potential exists in exploring the impact of urban 

development on the minimum stream temperature parameter (mu). The study area of this 

research did not have enough variation among this parameter to generate reliable results. 

Utilizing similar stream temperature data from warmer climates may lead to a conclusion about 

this relationship. Both the model structure and data are available to the Northeast Climate 

Science Center to undertake this expansion.  

 Finally, prediction power of the nonlinear model itself may have room for improvement. 

The current model predictions are not accurate enough for some applications, such as use in 

biological models. Further development of the breakpoint analysis methodology may improve 

results. Splitting the year into phases where temperature is either “in sync” or “out of sync” with 

air may be explored. The “out of sync” phase refers to the time of year when the air temperature 

continues to drop, while stream temperature remains consistent around 0
o
C due to freezing. 

Addressing these differing phases may be one key to improving model prediction power.  
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Appendix A: Stepwise Regression Results 

A1. Year-round Model 

Significance codes: 

0 ‘***’ 

0.001 ‘**’ 

0.01 ‘*’ 

0.05 ‘.’ 

0.1 ‘ ’ 

 

Mu 

  Estimate Std. Error t-value Pr(>|t|)   

(Intercept) 29.07495 14.05592 2.069 0.04011 * 

DA -0.00735 0.003056 -2.405 0.01723 * 

Sand -0.3012 0.141465 -2.129 0.03469 * 

Silt -0.31849 0.161519 -1.972 0.05026 . 

Stem -0.00011 6.54E-05 -1.738 0.08396 . 

Urban 0.06747 0.010336 6.528 7.49E-10 *** 

Decid 0.026906 0.008226 3.271 0.0013 ** 

Oakpine 0.027353 0.008557 3.197 0.00166 ** 

AugMeanAir -0.19864 0.128131 -1.55 0.12294   

FebPrcp 0.027639 0.009907 2.79 0.00588 ** 

 

Alpha 

  Estimate Std. Error t-value Pr(>|t|)   

(Intercept) 41.46315 8.521978 4.865 2.59E-06 *** 

DA 0.057073 0.009927 5.749 4.07E-08 *** 

Sand 0.141768 0.04075 3.479 0.000639 *** 

Stem -0.0005 0.00017 -2.948 0.003647 ** 

Agro -0.13244 0.02908 -4.554 9.98E-06 *** 

Grass 1.62248 0.655323 2.476 0.014271 * 

Decid -0.05646 0.016321 -3.459 0.000685 *** 

Oakpine -0.07661 0.015974 -4.796 3.52E-06 *** 

AugMaxAir -0.70978 0.316918 -2.24 0.02641 * 
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Theta 

  Estimate Std. Error 
t-
value Pr(>|t|)   

(Intercept) 0.979311 0.702331 1.394 0.165091   

DA 0.001273 0.000313 4.063 7.49E-05 *** 

Elev 0.000587 0.000148 3.962 0.000111 *** 

Slope -0.00793 0.00182 -4.36 2.29E-05 *** 

Sand -0.00217 0.001499 -1.444 0.150522   

Urban 0.002397 0.001059 2.264 0.024872 * 

Swamp 0.00968 0.001669 5.802 3.30E-08 *** 

Grass 0.066068 0.020467 3.228 0.001506 ** 

Peat -0.04289 0.028606 -1.499 0.135744   

Decid 0.00268 0.000795 3.372 0.00093 *** 

Oakpine 0.0025 0.000828 3.018 0.002948 ** 

AugMaxAir -0.03798 0.027148 -1.399 0.16374   

FebMeanAir -0.10709 0.01701 -6.296 2.69E-09 *** 

FebMaxAir 0.168549 0.031416 5.365 2.72E-07 *** 

FebPrcp -0.00219 0.001033 -2.124 0.035153 * 

 

Beta 

  Estimate Std. Error t-value Pr(>|t|)   

(Intercept) -4.43339 30.21075 -0.147 0.88351   

Elev -0.00506 0.003041 -1.662 0.09837 . 

BFI -0.14277 0.051046 -2.797 0.00579 ** 

Sand 0.464456 0.248638 1.868 0.06358 . 

Silt 0.51074 0.28559 1.788 0.0756 . 

Urban 0.024246 0.013762 1.762 0.08 . 

Agro -0.03574 0.01555 -2.298 0.02282 * 

Swamp 0.060322 0.027516 2.192 0.0298 * 

Grass 0.676413 0.359882 1.88 0.06198 . 

Peat 0.879292 0.500309 1.757 0.08073 . 

Oakpine -0.01706 0.005348 -3.19 0.00171 ** 

Water -0.10873 0.06905 -1.575 0.11731   

AugMeanAir 1.118273 0.713335 1.568 0.11892   

AugMaxAir -1.98136 0.650269 -3.047 0.0027 ** 

AugPrcp 0.036202 0.014754 2.454 0.01521 * 

FebMeanAir -0.88819 0.616888 -1.44 0.15187   

FebMaxAir 1.725553 0.632035 2.73 0.00704 ** 

FebPrcp -0.038 0.019348 -1.964 0.05124 . 
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A2. Rising Limb Model 

 

Mu 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) 2.11E+01 1.30E+01 1.614 0.10833   

DA -9.38E-03 3.34E-03 -2.805 0.00563 ** 

Sand -2.94E-01 1.43E-01 -2.063 0.04063 * 

Silt -3.19E-01 1.62E-01 -1.965 0.05108 . 

Stem -1.29E-04 7.49E-05 -1.718 0.08771 . 

Urban 3.95E-02 9.15E-03 4.317 2.70E-05 *** 

Agro -3.00E-02 1.17E-02 -2.572 0.01097 * 

Swamp -3.61E-02 1.54E-02 -2.352 0.01986 * 

AugMaxAir 2.85E-01 1.71E-01 1.668 0.09718 . 

FebPrcp 2.69E-02 9.87E-03 2.722 0.00718 ** 

FebMaxAir -3.37E-01 1.71E-01 -1.974 0.05002 . 

 

Alpha 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) 64.48652 19.25715 3.349 0.001003 ** 

DA 0.056253 0.012053 4.667 6.24E-06 *** 

Elev -0.0124 0.005589 -2.218 0.027882 * 

Sand 0.078173 0.048369 1.616 0.107942   

Agro -0.10948 0.032762 -3.342 0.001028 ** 

Grass 2.783318 0.739922 3.762 0.000233 *** 

Peat 1.70481 0.963212 1.77 0.078565 . 

Decid -0.07176 0.019756 -3.632 0.000374 *** 

Oakpine -0.09642 0.020208 -4.772 3.96E-06 *** 

AugMaxAir -1.4254 0.646191 -2.206 0.02876 * 

AugPrcp 0.043157 0.028461 1.516 0.131323   

FebPrcp -0.06358 0.035806 -1.776 0.077631 . 
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Theta 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) 2.14E+00 7.74E-01 2.758 0.006465 ** 

DA 6.46E-04 3.46E-04 1.867 0.063714 . 

Slope -9.44E-03 2.03E-03 -4.646 6.88E-06 *** 

BFI -5.07E-03 2.65E-03 -1.913 0.057426 . 

Stem 1.52E-05 7.56E-06 2.015 0.04557 * 

Swamp 1.06E-02 2.03E-03 5.249 4.65E-07 *** 

Grass 6.51E-02 2.35E-02 2.769 0.006271 ** 

Decid 2.14E-03 8.38E-04 2.551 0.011665 * 

Oakpine 1.40E-03 8.63E-04 1.625 0.106067   

AugMaxAir -6.75E-02 2.86E-02 -2.358 0.019551 * 

AugPrcp 2.90E-03 8.96E-04 3.238 0.001457 ** 

FebMeanAir -6.28E-02 1.72E-02 -3.66 0.000339 *** 

FebMaxAir 1.30E-01 3.37E-02 3.871 0.000156 *** 

FebPrcp -3.77E-03 1.05E-03 -3.586 0.000442 *** 

 

Beta 

  Estimate 
Std. 
Error 

t-
value Pr(>|t|) Signif. 

(Intercept) -1.48E+01 3.65E+01 -0.405 0.68564   

Elev -9.31E-03 3.48E-03 -2.676 0.008202 ** 

Slope 1.89E-01 4.01E-02 4.706 5.30E-06 *** 

BFI -2.40E-01 6.62E-02 -3.622 0.000388 *** 

Sand 6.06E-01 2.95E-01 2.054 0.041589 * 

Silt 6.32E-01 3.39E-01 1.865 0.063889 . 

Stem 2.10E-04 1.52E-04 1.384 0.168215   

Grass 9.19E-01 4.80E-01 1.914 0.05728 . 

Peat 1.13E+00 5.55E-01 2.035 0.043419 * 

Decid -6.79E-02 1.54E-02 -4.409 1.86E-05 *** 

Oakpine -7.50E-02 1.68E-02 -4.464 1.48E-05 *** 

AugMeanAir 1.50E+00 4.67E-01 3.212 0.001582 ** 

AugMaxAir -1.78E+00 6.63E-01 -2.689 0.007908 ** 
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A3. Falling Limb Model 

Mu 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) 33.81141 14.3028 2.364 0.0192 * 

DA -0.00825 0.003213 -2.566 0.01113 * 

Sand -0.38843 0.148357 -2.618 0.00963 ** 

Silt -0.41147 0.168252 -2.446 0.01548 * 

Urban 0.06492 0.009768 6.647 3.86E-10 *** 

Decid 0.018418 0.007396 2.49 0.01371 * 

Oakpine 0.017789 0.007467 2.383 0.01829 * 

FebPrcp 0.024346 0.009398 2.591 0.01041 * 

      Alpha 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) -6.60E+01 6.62E+01 -0.996 0.3206   

DA 7.16E-02 1.49E-02 4.807 3.38E-06 *** 

Sand 1.35E+00 6.81E-01 1.989 0.0484 * 

Silt 1.41E+00 7.73E-01 1.822 0.0703 . 

Stem -4.47E-04 2.51E-04 -1.781 0.0768 . 

Urban 6.76E-02 3.87E-02 1.744 0.083 . 

Swamp 1.78E-01 6.90E-02 2.578 0.0108 * 

Peat 1.87E+00 1.30E+00 1.44 0.1517   

Oakpine -1.60E-02 1.09E-02 -1.474 0.1425   

AugMaxAir -1.13E+00 4.76E-01 -2.367 0.0191 * 

FebPrcp -1.38E-01 5.41E-02 -2.555 0.0115 * 

 

Theta 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) 0.726406 0.223674 3.248 0.001404 ** 

DA 0.001349 0.000485 2.783 0.005992 ** 

Elev 0.000576 0.00017 3.381 0.000898 *** 

Slope -0.00723 0.002633 -2.746 0.006689 ** 

Sand -0.00526 0.00232 -2.269 0.024545 * 

Swamp 0.007801 0.002517 3.1 0.002269 ** 

Grass 0.081735 0.032441 2.519 0.01268 * 

FebMeanAir -0.0867 0.024385 -3.556 0.000489 *** 

FebMaxAir 0.115066 0.036303 3.17 0.001812 ** 
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FebPrcp -0.00485 0.00142 -3.415 0.000799 *** 

      Beta 

  Estimate Std. Error 
t-
value Pr(>|t|) Signif. 

(Intercept) 69.58743 16.27011 4.277 3.18E-05 *** 

DA 0.010383 0.007477 1.389 0.166783   

BFI -0.20683 0.065175 -3.173 0.001794 ** 

Sand 0.07495 0.041215 1.819 0.070773 . 

Urban 0.031469 0.0182 1.729 0.08564 . 

Swamp 0.124122 0.036891 3.365 0.000951 *** 

Decid 0.022087 0.007337 3.01 0.003014 ** 

AugMeanAir 1.609647 1.040105 1.548 0.123616   

AugMaxAir -3.73698 0.876142 -4.265 3.33E-05 *** 

FebMeanAir -1.9015 0.881902 -2.156 0.032504 * 

FebMaxAir 4.037484 0.875952 4.609 7.99E-06 *** 

FebPrcp -0.0496 0.022533 -2.201 0.02908 * 

 

A4. Summary Statistics 

Year-round 

 
Mu Alpha Theta Beta 

Multiple R2: 0.2856 0.5664 0.5003 0.46 

Adjusted R2: 0.2475 0.546 0.4576 0.4029 

p-value: 3.30E-09 2.2E-16 2.20E-16 1.96E-14 

     Rising 

 
Mu Alpha Theta Beta 

Multiple R2: 0.2981 0.5213 0.4663 0.3869 

Adjusted R2: 0.2563 0.4897 0.4243 0.3426 

p-value: 2.53E-09 2.20E-16 2.20E-16 8.62E-13 

     Falling 

 
Mu Alpha Theta Beta 

Multiple R2: 0.2656 0.3578 0.2655 0.387 

Adjusted R2: 0.2355 0.3196 0.2264 0.3467 

p-value: 2.91E-09 2.90E-12 2.68E-08 2.66E-13 
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A5. Correlation Matrix 

 

D
A

Elev
Slope

A
spect

BFI
Clay

Sand
Silt

Biom
ass

Stem
U

rban
A

gro
Sw

am
p

G
rass

Peat
Rock

D
ecid

O
akpine

Boreal
W

ater
A

ugM
eanA

ir
A

ugM
axA

ir
A

ugPrcp
FebM

eanA
ir

FebM
axA

ir
FebPrcp

D
A

1.00
-0.32

-0.06
0.19

0.10
-0.07

0.15
-0.15

-0.52
-0.32

0.36
-0.20

0.23
0.24

-0.01
0.03

-0.22
0.13

-0.04
0.51

0.27
0.27

0.00
0.26

0.28
-0.16

Elev
-0.32

1.00
0.50

-0.02
-0.62

0.47
-0.75

0.76
0.37

0.87
-0.60

-0.09
-0.41

-0.14
0.22

0.33
0.62

-0.53
0.39

-0.11
-0.88

-0.96
0.61

-0.84
-0.93

0.39

Slope
-0.06

0.50
1.00

-0.08
-0.68

0.49
-0.63

0.63
0.11

0.50
-0.42

-0.03
-0.64

0.00
-0.07

0.44
0.47

-0.33
0.01

-0.13
-0.50

-0.42
0.43

-0.53
-0.52

-0.03

A
spect

0.19
-0.02

-0.08
1.00

0.07
-0.08

-0.01
0.02

0.00
0.06

0.04
-0.26

0.12
-0.01

-0.11
0.07

0.15
-0.14

-0.11
0.28

0.01
-0.01

-0.16
0.00

-0.03
-0.05

BFI
0.10

-0.62
-0.68

0.07
1.00

-0.48
0.79

-0.80
-0.27

-0.62
0.32

0.01
0.54

-0.10
0.05

-0.28
-0.64

0.59
-0.10

0.19
0.64

0.55
-0.38

0.68
0.67

-0.18

Clay
-0.07

0.47
0.49

-0.08
-0.48

1.00
-0.75

0.69
0.13

0.26
-0.24

0.13
-0.44

-0.06
0.06

0.01
0.18

-0.13
0.13

0.02
-0.31

-0.37
0.48

-0.27
-0.34

-0.17

Sand
0.15

-0.75
-0.63

-0.01
0.79

-0.75
1.00

-1.00
-0.33

-0.68
0.41

0.04
0.47

0.04
-0.13

-0.28
-0.63

0.57
-0.22

0.05
0.73

0.72
-0.40

0.72
0.76

-0.26

Silt
-0.15

0.76
0.63

0.02
-0.80

0.69
-1.00

1.00
0.34

0.71
-0.42

-0.06
-0.46

-0.03
0.13

0.30
0.66

-0.60
0.23

-0.06
-0.75

-0.74
0.38

-0.75
-0.79

0.30

Biom
ass

-0.52
0.37

0.11
0.00

-0.27
0.13

-0.33
0.34

1.00
0.37

-0.28
0.01

-0.23
-0.12

-0.05
0.01

0.35
-0.26

-0.02
-0.31

-0.30
-0.34

0.02
-0.30

-0.35
0.13

Stem
-0.32

0.87
0.50

0.06
-0.62

0.26
-0.68

0.71
0.37

1.00
-0.67

-0.29
-0.27

-0.11
0.17

0.36
0.73

-0.61
0.33

-0.09
-0.92

-0.88
0.33

-0.91
-0.92

0.53

U
rban

0.36
-0.60

-0.42
0.04

0.32
-0.24

0.41
-0.42

-0.28
-0.67

1.00
-0.11

0.31
0.27

-0.07
-0.13

-0.49
0.27

-0.12
0.11

0.58
0.60

-0.20
0.58

0.61
-0.18

A
gro

-0.20
-0.09

-0.03
-0.26

0.01
0.13

0.04
-0.06

0.01
-0.29

-0.11
1.00

-0.28
-0.14

-0.12
-0.21

-0.09
0.03

-0.17
-0.24

0.13
0.15

0.04
0.12

0.13
-0.29

Sw
am

p
0.23

-0.41
-0.64

0.12
0.54

-0.44
0.47

-0.46
-0.23

-0.27
0.31

-0.28
1.00

0.04
0.22

-0.09
-0.32

0.16
0.18

0.19
0.28

0.29
-0.42

0.29
0.35

0.24

G
rass

0.24
-0.14

0.00
-0.01

-0.10
-0.06

0.04
-0.03

-0.12
-0.11

0.27
-0.14

0.04
1.00

-0.02
0.04

-0.07
0.01

-0.02
0.12

0.12
0.15

-0.04
0.11

0.12
-0.04

Peat
-0.01

0.22
-0.07

-0.11
0.05

0.06
-0.13

0.13
-0.05

0.17
-0.07

-0.12
0.22

-0.02
1.00

0.02
0.00

-0.09
0.76

0.08
-0.21

-0.21
0.20

-0.16
-0.14

0.53

Rock
0.03

0.33
0.44

0.07
-0.28

0.01
-0.28

0.30
0.01

0.36
-0.13

-0.21
-0.09

0.04
0.02

1.00
0.29

-0.29
0.07

-0.03
-0.42

-0.38
0.19

-0.42
-0.41

0.37

D
ecid

-0.22
0.62

0.47
0.15

-0.64
0.18

-0.63
0.66

0.35
0.73

-0.49
-0.09

-0.32
-0.07

0.00
0.29

1.00
-0.94

0.03
-0.11

-0.74
-0.64

0.03
-0.81

-0.79
0.37

O
akpine

0.13
-0.53

-0.33
-0.14

0.59
-0.13

0.57
-0.60

-0.26
-0.61

0.27
0.03

0.16
0.01

-0.09
-0.29

-0.94
1.00

-0.15
0.06

0.70
0.57

-0.01
0.77

0.71
-0.44

Boreal
-0.04

0.39
0.01

-0.11
-0.10

0.13
-0.22

0.23
-0.02

0.33
-0.12

-0.17
0.18

-0.02
0.76

0.07
0.03

-0.15
1.00

0.05
-0.41

-0.40
0.43

-0.34
-0.31

0.58

W
ater

0.51
-0.11

-0.13
0.28

0.19
0.02

0.05
-0.06

-0.31
-0.09

0.11
-0.24

0.19
0.12

0.08
-0.03

-0.11
0.06

0.05
1.00

0.06
0.03

-0.03
0.08

0.07
-0.05

A
ugM

eanA
ir

0.27
-0.88

-0.50
0.01

0.64
-0.31

0.73
-0.75

-0.30
-0.92

0.58
0.13

0.28
0.12

-0.21
-0.42

-0.74
0.70

-0.41
0.06

1.00
0.94

-0.42
0.98

0.97
-0.58

A
ugM

axA
ir

0.27
-0.96

-0.42
-0.01

0.55
-0.37

0.72
-0.74

-0.34
-0.88

0.60
0.15

0.29
0.15

-0.21
-0.38

-0.64
0.57

-0.40
0.03

0.94
1.00

-0.51
0.89

0.96
-0.49

A
ugPrcp

0.00
0.61

0.43
-0.16

-0.38
0.48

-0.40
0.38

0.02
0.33

-0.20
0.04

-0.42
-0.04

0.20
0.19

0.03
-0.01

0.43
-0.03

-0.42
-0.51

1.00
-0.34

-0.41
0.05

FebM
eanA

ir
0.26

-0.84
-0.53

0.00
0.68

-0.27
0.72

-0.75
-0.30

-0.91
0.58

0.12
0.29

0.11
-0.16

-0.42
-0.81

0.77
-0.34

0.08
0.98

0.89
-0.34

1.00
0.97

-0.56

FebM
axA

ir
0.28

-0.93
-0.52

-0.03
0.67

-0.34
0.76

-0.79
-0.35

-0.92
0.61

0.13
0.35

0.12
-0.14

-0.41
-0.79

0.71
-0.31

0.07
0.97

0.96
-0.41

0.97
1.00

-0.49

FebPrcp
-0.16

0.39
-0.03

-0.05
-0.18

-0.17
-0.26

0.30
0.13

0.53
-0.18

-0.29
0.24

-0.04
0.53

0.37
0.37

-0.44
0.58

-0.05
-0.58

-0.49
0.05

-0.56
-0.49

1.00



76 

 

Appendix B – Principal Component Analysis 

B1. PCA Loadings 

Rank PCA 1 (44.3%) PCA 2 (10.8%) PCA 3 (8.3%) PCA 4 (7.0 %) 

1 FebMaxAir 0.303 Swamp -0.443 DA 0.491 AugPrcp 0.507 

2 FebMeanAir 0.297 Agro 0.389 Water 0.381 Peat 0.454 

3 AugMeanAir 0.297 FebPrcp -0.378 Biomass -0.317 Decid -0.368 

4 Elev -0.288 Water -0.310 Slope 0.276 Aspect -0.360 

5 Stem -0.287 Peat -0.284 Grass 0.274 Oakpine 0.355 

6 AugMaxAir 0.286 Aspect -0.247 FebPrcp -0.256 Biomass -0.214 

7 Silt -0.270 Slope 0.246 BFI -0.216 Elev 0.179 

8 Sand 0.263 DA -0.205 AugPrcp 0.207 AugMaxAir -0.148 

9 Decid -0.252 BFI -0.165 Sand -0.202 FebPrcp 0.144 

10 BFI 0.238 Silt 0.157 Silt 0.185 Elev 0.098 

11 Oakpine 0.218 Oakpine 0.148 Aspect 0.184 Grass -0.065 

12 Slope -0.199 Biomass 0.140 Swamp -0.164 AugMeanAir -0.057 

13 Urban 0.196 Stem -0.118 Urban 0.146 Urban -0.056 

14 Swamp 0.145 AugMeanAir 0.115 Agro -0.144 Agro 0.039 

15 FebPrcp -0.144 FebMeanAir 0.105 Peat -0.138 DA 0.038 

16 AugPrcp -0.138 AugMaxAir 0.101 Stem -0.058 Water 0.036 

17 Biomass -0.135 Urban -0.081 FebMeanAir 0.037 FebMeanAir 0.030 

18 DA 0.107 FebMaxAir 0.076 AugMeanAir 0.035 Silt -0.021 

19 Water 0.050 Decid -0.071 Decid -0.032 Slope 0.012 

20 Peat -0.050 Sand -0.067 Oakpine 0.031 Swamp 0.010 

21 Grass 0.034 Grass -0.056 AugMaxAir 0.027 Stem 0.007 

22 Agro 0.025 Silt 0.046 FebMaxAir 0.015 FebMaxAir -0.005 

23 Aspect 0.007 Elev 0.000 Elev -0.008 Sand 0.001 
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Rank PCA 5 (5.5%) PCA 6 (4.2%) PCA 7 (3.4%) PCA 8 (3.1%) 

1 Grass 0.492 Agro -0.584 Grass -0.411 Grass -0.525 

2 Aspect -0.421 Grass 0.422 Biomass 0.381 Agro -0.509 

3 Urban 0.391 Biomass 0.410 Urban 0.381 Water -0.374 

4 Water -0.286 Oakpine 0.313 Sand -0.345 Slope 0.328 

5 FebPrcp 0.270 DA -0.249 Silt 0.323 Biomass -0.230 

6 BFI -0.261 Decid -0.187 Peat 0.320 Aspect -0.180 

7 Oakpine -0.242 Stem 0.146 Aspect 0.299 DA 0.172 

8 Peat 0.222 Aspect 0.141 Stem -0.180 BFI -0.129 

9 AugMaxAir 0.152 Water -0.135 FebMeanAir 0.159 Peat -0.124 

10 AugPrcp -0.129 AugMeanAir 0.106 FebPrcp 0.121 Sand 0.123 

11 Stem -0.118 Peat -0.105 Slope -0.117 AugMaxAir 0.122 

12 Silt 0.104 FebMeanAir 0.100 FebMaxAir 0.107 Elev -0.117 

13 Sand -0.092 Elev 0.095 AugPrcp 0.095 Stem 0.084 

14 AugPrcp -0.085 AugMeanAir 0.069 Decid -0.080 AugPrcp -0.081 

15 Decid 0.084 Urban 0.064 BFI -0.076 Urban 0.066 

16 FebMaxAir 0.065 Slope 0.052 AugMaxAir 0.061 Oakpine 0.060 

17 Agro 0.048 AugMaxAir -0.043 Swamp -0.041 FebMaxAir 0.052 

18 DA 0.034 Swamp -0.041 Oakpine -0.037 Decid 0.031 

19 Swamp 0.030 FebMaxAir 0.024 Agro 0.016 AugMeanAir 0.027 

20 AugMeanAir 0.028 Sand 0.019 FebPrcp 0.011 Swamp 0.025 

21 Biomass -0.027 Silt -0.017 DA 0.008 Sand 0.018 

22 FebMeanAir -0.012 FebPrcp -0.016 Water 0.008 Silt -0.011 

23 Slope 0.004 BFI -0.009 Elev 0.002 FebMeanAir -0.003 
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Rank PCA 9 (2.7%) PCA 10 (2.5%) PCA 11 (2.0%) PCA 12 (1.6%) 

1 Urban -0.500 Aspect -0.582 Water 0.529 DA 0.553 

2 Peat 0.486 Water 0.350 Swamp -0.416 Biomass 0.508 

3 AugPrcp -0.411 Biomass 0.345 DA -0.353 Sand 0.301 

4 Slope 0.350 Peat -0.295 Urban 0.269 Silt -0.291 

5 AugMaxAir 0.199 AugPrcp -0.255 Aspect -0.264 AugPrcp 0.260 

6 Elev -0.172 DA 0.214 Agro -0.231 Decid 0.217 

7 Water 0.146 Sand -0.203 Oakpine -0.210 Oakpine -0.200 

8 Oakpine 0.145 Silt 0.195 Decid 0.193 Peat 0.195 

9 FebMaxAir 0.143 Swamp 0.194 Sand 0.182 Urban -0.146 

10 Slope -0.132   -0.183 Silt -0.178 FebPrcp -0.144 

11 AugMeanAir 0.130 Oakpine 0.157 Grass -0.137 Water -0.096 

12 Silt 0.125 Decid -0.125 BFI 0.135 Slope 0.079 

13 Swamp -0.114 Grass -0.103 Slope 0.135 Aspect -0.078 

14 Grass 0.100 AugMaxAir -0.097 AugMaxAir 0.086 AugMaxAir 0.042 

15 FebMeanAir 0.088 Agro -0.054 Peat 0.081 Elev 0.033 

16 Biomass 0.064 Urban -0.049 AugPrcp 0.071 AugMeanAir 0.031 

17 Stem 0.056 FebPrcp -0.049 Stem -0.053 Agro -0.025 

18 Decid 0.035 BFI -0.033 Biomass 0.040 FebMaxAir 0.020 

19 FebPrcp 0.027 FebMaxAir -0.031 FebMeanAir -0.036 Stem -0.014 

20 DA -0.026 Stem 0.028 Elev -0.035 BFI 0.010 

21 Agro -0.016 AugMeanAir -0.026 AugMeanAir 0.023 FebMeanAir 0.005 

22 BFI 0.016 Elev -0.020 FebPrcp 0.018 Grass -0.004 

23 Aspect 0.007 FebMeanAir -0.007 FebMaxAir 0.001 Swamp 0.000 
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Rank PCA 13 (1.3%) PCA 14 (1.0 %) PCA 15 (0.9%) PCA 16 (0.7%) 

1 FebPrcp -0.666 Swamp -0.539 BFI -0.706 AugPrcp -0.387 

2 Swamp 0.452 Slope -0.507 Slope -0.422 FebPrcp -0.356 

3 DA -0.234 AugPrcp -0.236 Urban -0.279 BFI -0.352 

4 Oakpine -0.210 DA 0.220 AugPrcp 0.177 Urban 0.338 

5 Peat 0.202 Water -0.218 AugMeanAir 0.168 Peat 0.277 

6 Agro -0.188 BFI 0.206 DA -0.165 Decid -0.264 

7 Aspect -0.171 Agro -0.201 AugMaxAir 0.164 FebMeanAir -0.241 

8 Decid 0.168 Elev 0.192 Water 0.145 Sand 0.235 

9 BFI 0.165 Biomass -0.185 FebMeanAir 0.133 AugMeanAir -0.219 

10 Sand -0.137 AugMaxAir -0.165 FebMaxAir 0.131 Stem 0.217 

11 Biomass -0.134 FebPrcp -0.158 Agro -0.121 Silt -0.206 

12 Elev 0.129 Decid 0.147 Decid 0.116 Oakpine 0.178 

13 Silt 0.093 Peat 0.138 Biomass -0.105 FebMaxAir -0.162 

14 Water -0.086 FebMeanAir 0.121 Stem 0.088 Agro 0.097 

15 Stem -0.077 AugMeanAir 0.100 Silt -0.084 Grass -0.066 

16 Slope 0.069 Aspect -0.083 Grass -0.082 AugMaxAir -0.063 

17 AugMeanAir 0.068 Sand -0.075 Sand 0.078 Elev 0.058 

18 AugPrcp 0.052 Silt 0.073 Swamp 0.066 Aspect 0.058 

19 FebMeanAir 0.045 FebMaxAir -0.070 Peat 0.047 Slope 0.041 

20 FebMaxAir -0.041 Stem 0.057 FebPrcp -0.038 Swamp -0.041 

21 AugMaxAir -0.039 Urban -0.037 Oakpine -0.025 Biomass 0.029 

22 Grass 0.026 Grass 0.034 Elev 0.025 DA 0.029 

23 Urban 0.002 Oakpine 0.022 Aspect -0.016 Water 0.015 
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Rank PCA 17 (0.3%) PCA 18 (0.2%) PCA 19 (0.1%) PCA 20 (0.04%) 

1 Elev -0.577 Stem 0.824 FebMaxAir 0.568 Elev 0.597 

2 FebMeanAir -0.420 AugMaxAir 0.306 AugMaxAir -0.496 FebMaxAir 0.416 

3 AugMeanAir -0.373 Agro 0.190 AugMeanAir -0.436 AugMaxAir 0.414 

4 Slope -0.270 BFI 0.183 FebMeanAir 0.406 AugMeanAir -0.352 

5 AugMaxAir 0.268 AugMeanAir 0.178 Elev -0.167 Stem -0.208 

6 AugPrcp 0.237 Urban 0.178 Oakpine -0.130 Decid -0.202 

7 FebPrcp -0.192 FebMaxAir 0.158 Stem 0.123 FebMeanAir -0.168 

8 BFI 0.136 FebMeanAir 0.149 Slope 0.061 Oakpine -0.151 

9 Sand -0.124 Elev 0.135 BFI -0.059 AugPrcp -0.111 

10 Stem 0.123 Oakpine -0.091 Silt -0.046 Urban -0.092 

11 FebMaxAir 0.115 AugPrcp 0.076 FebPrcp -0.045 Agro -0.081 

12 Swamp -0.107 Sand -0.069 AugPrcp -0.036 Peat -0.065 

13 Agro -0.105 Swamp 0.050 Decid 0.029 Sand -0.048 

14 Silt 0.104 Peat -0.045 DA -0.028 BFI 0.045 

15 Urban -0.086 DA 0.043 Swamp -0.024 Swamp -0.035 

16 Water -0.065 Aspect -0.040 Urban 0.024 DA 0.027 

17 Decid -0.048 Silt 0.034 Sand 0.015 Silt -0.026 

18 Peat 0.044 Water 0.031 Biomass -0.012 Slope -0.024 

19 Biomass 0.025 Biomass -0.021 Aspect -0.010 FebPrcp 0.015 

20 Oakpine 0.023 Slope 0.010 Agro 0.010 Grass 0.007 

21 Grass 0.021 FebPrcp -0.007 Peat 0.007 Aspect 0.005 

22 DA -0.015 Grass -0.004 Grass 0.000 Biomass -0.001 

23 Aspect 0.006 Decid -0.001 Water 0.000 Water 0.001 
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Rank PCA 21 (0.01%) PCA 22 (0.01%) PCA 23 (0.01%) 

1 Decid -0.681 FebMeanAir 0.5598 Silt -0.673 

2 Oakpine -0.620 FebMaxAir -0.494 Sand -0.635 

3 AugMeanAir 0.216 AugMeanAir -0.4406 FebMeanAir -0.237 

4 Urban -0.186 AugMaxAir 0.31632 AugMeanAir 0.195 

5 AugMaxAir -0.132 Silt -0.2714 AugMaxAir -0.151 

6 Elev -0.126 Sand -0.2525 FebMaxAir 0.148 

7 FebMaxAir -0.108 Elev -0.0559 Decid 0.034 

8 Swamp -0.104 Decid -0.0551 Oakpine 0.029 

9 Agro -0.100 Oakpine -0.0468 FebPrcp 0.025 

10 Stem 0.04963 Urban -0.036 Urban 0.02353 

11 Water -0.0224 Agro -0.021 AugPrcp -0.018 

12 FebPrcp -0.0205 Stem -0.021 BFI -0.0157 

13 AugPrcp -0.0185 Slope -0.014 Aspect 0.0099 

14 Peat -0.0177 Swamp -0.009 Agro 0.00912 

15 BFI -0.0164 FebPrcp 0.009 Slope 0.00855 

16 Grass -0.0098 Biomass 0.008 Elev -0.0073 

17 Slope 0.00791 Aspect -0.007 Stem 0.0059 

18 Sand 0.00607 Grass 0.003 Water -0.0051 

19 Silt -0.0048 Peat 0.002 DA 0.00471 

20 DA -0.0043 BFI -0.001 Biomass 0.00402 

21 Aspect -0.0033 DA 0.001 Grass 0.00291 

22 Biomass 0.00326 Water 0.000 Swamp -0.0017 

23 FebMeanAir 0.00317 AugPrcp 0.000 Peat -0.0012 
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B2. PCA Significance to Each Nonlinear Model Parameter 

PCA Significance to Each Parameter 

  Mu Alpha Theta Beta 

Intercept 3 1 1 1 

1   1   1 

2   1 1 3 

3 4 1   1 

4         

5   2   1 

6     4   

7 2     3 

8         

9   2 1 4 

10     4   

11 4   2   

12 4 1     

13   4 3   

14       4 

15   4 2   

16         

17     3   

18         

19       2 

20     2   

21         

22   4 4 3 

23         
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Appendix C - Calibration 

C1. Comparison of parameters under standard and hysteresis methods of 

calibration. 

 

 


